531 resultados para distracted driving
Resumo:
Freeways are divided roadways designed to facilitate the uninterrupted movement of motor vehicles. However, many freeways now experience demand flows in excess of capacity, leading to recurrent congestion. The Highway Capacity Manual (TRB, 1994) uses empirical macroscopic relationships between speed, flow and density to quantify freeway operations and performance. Capacity may be predicted as the maximum uncongested flow achievable. Although they are effective tools for design and analysis, macroscopic models lack an understanding of the nature of processes taking place in the system. Szwed and Smith (1972, 1974) and Makigami and Matsuo (1990) have shown that microscopic modelling is also applicable to freeway operations. Such models facilitate an understanding of the processes whilst providing for the assessment of performance, through measures of capacity and delay. However, these models are limited to only a few circumstances. The aim of this study was to produce more comprehensive and practical microscopic models. These models were required to accurately portray the mechanisms of freeway operations at the specific locations under consideration. The models needed to be able to be calibrated using data acquired at these locations. The output of the models needed to be able to be validated with data acquired at these sites. Therefore, the outputs should be truly descriptive of the performance of the facility. A theoretical basis needed to underlie the form of these models, rather than empiricism, which is the case for the macroscopic models currently used. And the models needed to be adaptable to variable operating conditions, so that they may be applied, where possible, to other similar systems and facilities. It was not possible to produce a stand-alone model which is applicable to all facilities and locations, in this single study, however the scene has been set for the application of the models to a much broader range of operating conditions. Opportunities for further development of the models were identified, and procedures provided for the calibration and validation of the models to a wide range of conditions. The models developed, do however, have limitations in their applicability. Only uncongested operations were studied and represented. Driver behaviour in Brisbane was applied to the models. Different mechanisms are likely in other locations due to variability in road rules and driving cultures. Not all manoeuvres evident were modelled. Some unusual manoeuvres were considered unwarranted to model. However the models developed contain the principal processes of freeway operations, merging and lane changing. Gap acceptance theory was applied to these critical operations to assess freeway performance. Gap acceptance theory was found to be applicable to merging, however the major stream, the kerb lane traffic, exercises only a limited priority over the minor stream, the on-ramp traffic. Theory was established to account for this activity. Kerb lane drivers were also found to change to the median lane where possible, to assist coincident mergers. The net limited priority model accounts for this by predicting a reduced major stream flow rate, which excludes lane changers. Cowan's M3 model as calibrated for both streams. On-ramp and total upstream flow are required as input. Relationships between proportion of headways greater than 1 s and flow differed for on-ramps where traffic leaves signalised intersections and unsignalised intersections. Constant departure onramp metering was also modelled. Minimum follow-on times of 1 to 1.2 s were calibrated. Critical gaps were shown to lie between the minimum follow-on time, and the sum of the minimum follow-on time and the 1 s minimum headway. Limited priority capacity and other boundary relationships were established by Troutbeck (1995). The minimum average minor stream delay and corresponding proportion of drivers delayed were quantified theoretically in this study. A simulation model was constructed to predict intermediate minor and major stream delays across all minor and major stream flows. Pseudo-empirical relationships were established to predict average delays. Major stream average delays are limited to 0.5 s, insignificant compared with minor stream delay, which reach infinity at capacity. Minor stream delays were shown to be less when unsignalised intersections are located upstream of on-ramps than signalised intersections, and less still when ramp metering is installed. Smaller delays correspond to improved merge area performance. A more tangible performance measure, the distribution of distances required to merge, was established by including design speeds. This distribution can be measured to validate the model. Merging probabilities can be predicted for given taper lengths, a most useful performance measure. This model was also shown to be applicable to lane changing. Tolerable limits to merging probabilities require calibration. From these, practical capacities can be estimated. Further calibration is required of traffic inputs, critical gap and minimum follow-on time, for both merging and lane changing. A general relationship to predict proportion of drivers delayed requires development. These models can then be used to complement existing macroscopic models to assess performance, and provide further insight into the nature of operations.
Resumo:
This report examines the conditions surrounding the emergence and growth of innovative new firms in the building and construction product system. The focus on innovative new firms was prompted by diverse literatures which highlight the pivotal roles of innovation and new business activity in driving economic growth. 9 The literature concludes that the founders of new firms are likely to be innovative and that new firms are likely to promote industry innovation and efficiency. New businesses have also been found to have positive employment impacts and to grow faster than established firms.
Resumo:
Competitive markets are increasingly driving new initiatives for shorter cycle times resulting in increased overlapping of project phases. This, in turn, necessitates improving the interfaces between the different phases to be overlapped (integrated), thus allowing transfer of processes, information and knowledge from one individual or team to another. This transfer between phases, within and between projects, is one of the basic challenges to the philosophy of project management. To make the process transfer more transparent with minimal loss of momentum and project knowledge, this paper draws upon Total Quality Management (TQM) and Business Process Re-engineering (BPR) philosophies to develop a Best Practice Model for managing project phase integration. The paper presents the rationale behind the model development and outlines its two key parts; (1) Strategic Framework and (2) Implementation Plan. Key components of both the Strategic Framework and the Implementation Plan are presented and discussed.
Resumo:
Workplace serious injuries and deaths due to unsafe work practices are a substantial health and socioeconomic burden to the community, particularly in industries such as construction, agriculture and fishing, and transport and storage. Some 2000 individuals die each year from work-related causes and tens of thousands of individuals incur permanent disabling work-related injuries and the direct (e.g., medical & legal) and indirect (e.g., lost productivity) cost to the Australian economy has been estimated between $32 billion and $57 billion annually. A common cause of workplace injuries and deaths is occupational driving and work-related fatal road crashes comprise between 23 and 32% of work-related fatalities each year. A major safety concern across the various industry groups therefore involve deaths and injuries associated with work-related driving. However, while organisations emphasise safety practices in most spheres of the workplace they often neglect work-related driving and lack appropriate policies to enhance safe driving practices.
Resumo:
Objective: To explore the role of psychological distress in the self-reported risky driving of young novice drivers. Design: Cross-sectional online survey of 761 tertiary students aged 17-25 years with an intermediate (Provisional) driving licence who completed Kessler’s Psychological Distress Scale and the Behaviour of Young Novice Drivers Scale. Setting: Queensland, Australia, August-October 2009. Main outcome measures: Psychological distress, risky driving. Results: Regression analyses revealed that psychological distress uniquely explained 8.5% of the variance in young novice’s risky driving, with adolescents experiencing psychological distress also reporting higher levels of risky driving. Psychological distress uniquely explained a significant 6.7% and 9.5% of variance in risky driving for males and females respectively. Conclusions: Medical practitioners treating adolescents who have been injured through risky behaviour need to aware of the potential contribution of psychological distress, whilst mental health professionals working with adolescents experiencing psychological distress need to be aware of this additional source of potential harm. The nature of the causal relationships linking psychological distress and risky driving behaviour are not yet fully understood, indicating a need for further research so that strategies such as screening can be investigated.
Resumo:
The potential restriction to effective dispersal and gene flow caused by habitat fragmentation can apply to multiple levels of evolutionary scale; from the fragmentation of ancient supercontinents driving diversification and speciation on disjunct landmasses, to the isolation of proximate populations as a result of their inability to cross intervening unsuitable habitat. Investigating the role of habitat fragmentation in driving diversity within and among taxa can thus include inferences of phylogenetic relationships among taxa, assessments of intraspecific phylogeographic structure and analyses of gene flow among neighbouring populations. The proposed Gondwanan clade within the chironomid (non-biting midge) subfamily Orthocladiinae (Diptera: Chironomidae) represents a model system for investigating the role that population fragmentation and isolation has played at different evolutionary scales. A pilot study by Krosch et al (2009) indentified several highly divergent lineages restricted to ancient rainforest refugia and limited gene flow among proximate sites within a refuge for one member of this clade, Echinocladius martini Cranston. This study provided a framework for investigating the evolutionary history of this taxon and its relatives more thoroughly. Populations of E. martini were sampled in the Paluma bioregion of northeast Queensland to investigate patterns of fine-scale within- and among-stream dispersal and gene flow within a refuge more rigorously. Data was incorporated from Krosch et al (2009) and additional sites were sampled up- and downstream of the original sites. Analyses of genetic structure revealed strong natal site fidelity and high genetic structure among geographically proximate streams. Little evidence was found for regular headwater exchange among upstream sites, but there was distinct evidence for rare adult flight among sites on separate stream reaches. Overall, however, the distribution of shared haplotypes implied that both larval and adult dispersal was largely limited to the natal stream channel. Patterns of regional phylogeographic structure were examined in two related austral orthoclad taxa – Naonella forsythi Boothroyd from New Zealand and Ferringtonia patagonica Sæther and Andersen from southern South America – to provide a comparison with patterns revealed in their close relative E. martini. Both taxa inhabit tectonically active areas of the southern hemisphere that have also experienced several glaciation events throughout the Plio-Pleistocene that are thought to have affected population structure dramatically in many taxa. Four highly divergent lineages estimated to have diverged since the late Miocene were revealed in each taxon, mirroring patterns in E. martini; however, there was no evidence for local geographical endemism, implying substantial range expansion post-diversification. The differences in pattern evident among the three related taxa were suggested to have been influenced by variation in the responses of closed forest habitat to climatic fluctuations during interglacial periods across the three landmasses. Phylogeographic structure in E. martini was resolved at a continental scale by expanding upon the sampling design of Krosch et al (2009) to encompass populations in southeast Queensland, New South Wales and Victoria. Patterns of phylogeographic structure were consistent with expectations and several previously unrecognised lineages were revealed from central- and southern Australia that were geographically endemic to closed forest refugia. Estimated divergence times were congruent with the timing of Plio-Pleistocene rainforest contractions across the east coast of Australia. This suggested that dispersal and gene flow of E. martini among isolated refugia was highly restricted and that this taxon was susceptible to the impacts of habitat change. Broader phylogenetic relationships among taxa considered to be members of this Gondwanan orthoclad group were resolved in order to test expected patterns of evolutionary affinities across the austral continents. The inferred phylogeny and estimated divergence times did not accord with expected patterns based on the geological sequence of break-up of the Gondwanan supercontinent and implied instead several transoceanic dispersal events post-vicariance. Difficulties in appropriate taxonomic sampling and accurate calibration of molecular phylogenies notwithstanding, the sampling regime implemented in the current study has been the most intensive yet performed for austral members of the Orthocladiinae and unsurprisingly has revealed both novel taxa and phylogenetic relationships within and among described genera. Several novel associations between life stages are made here for both described and previously unknown taxa. Investigating evolutionary relationships within and among members of this clade of proposed Gondwanan orthoclad taxa has demonstrated that a complex interaction between historical population fragmentation and dispersal at several levels of evolutionary scale has been important in driving diversification in this group. While interruptions to migration, colonisation and gene flow driven by population fragmentation have clearly contributed to the development and maintenance of much of the diversity present in this group, long-distance dispersal has also played a role in influencing diversification of continental biotas and facilitating gene flow among disjunct populations.
Resumo:
Speeding in school zones is a problem in both Malaysia and Australia. While there are differences between the countries in terms of school zone treatments and more generally, these differences do not explain why people choose to speed in school zones. Because speeding is usually an intentional behaviour, the Theory of Planned Behaviour (TPB) has been used to understand speeding and develop interventions, however it has limitations which can be addressed by extending the model to incorporate other constructs. One promising construct is mindfulness, which can improve the explanatory value of the TPB by taking into account unintentional speeding attributable to a lack of focus on important elements of the driving environment. We explain what mindfulness is (and is not), how it can assist in providing a better understanding of speeding in school zones, and how it can contribute to the development of interventions. We then outline a program of research which has been commenced, investigating the contribution of mindfulness to an understanding of speed choice in school zones in two different settings (Australia and Malaysia) using the TPB.
Resumo:
China is one of Asia’s many rapidly-motorising nations and recent increases in private-vehicle ownership have been coupled with an escalation in novice drivers. Several pieces of road safety legislation have been introduced in recent decades in China. While managing the legal aspects of road use is important, social influences on driver behaviour may offer alternative avenues to alter behaviour, particularly in a culture where such factors carry high importance. This paper reports qualitative research with Beijing drivers to investigate social influence factors that have, to date, received little attention in the literature. Findings indicated that family members, friends, and driving instructors appear influential on driver behaviour and that some newly licensed drivers seek additional assistance to facilitate the transition from learning to drive in a controlled environment to driving on the road in complex conditions. Strategies to avoid detection and penalties for inappropriate road use were described, many of which involved the use of a third person. These findings indicate potential barriers to implementing effective traffic enforcement and highlight the importance of understanding culturally-specific social factors relating to driver behaviour.
Resumo:
Traffic oscillations are typical features of congested traffic flow that are characterized by recurring decelerations followed by accelerations (stop-and-go driving). The negative environmental impacts of these oscillations are widely accepted, but their impact on traffic safety has been debated. This paper describes the impact of freeway traffic oscillations on traffic safety. This study employs a matched case-control design using high-resolution traffic and crash data from a freeway segment. Traffic conditions prior to each crash were taken as cases, while traffic conditions during the same periods on days without crashes were taken as controls. These were also matched by presence of congestion, geometry and weather. A total of 82 cases and about 80,000 candidate controls were extracted from more than three years of data from 2004 to 2007. Conditional logistic regression models were developed based on the case-control samples. To verify consistency in the results, 20 different sets of controls were randomly extracted from the candidate pool for varying control-case ratios. The results reveal that the standard deviation of speed (thus, oscillations) is a significant variable, with an average odds ratio of about 1.08. This implies that the likelihood of a (rear-end) crash increases by about 8% with an additional unit increase in the standard deviation of speed. The average traffic states prior to crashes were less significant than the speed variations in congestion.
Resumo:
In this paper we identify the origins of stop-and-go (or slow-and-go) driving and measure microscopic features of their propagations by analyzing vehicle trajectories via Wavelet Transform. Based on 53 oscillation cases analyzed, we find that oscillations can be originated by either lane-changing maneuvers (LCMs) or car-following behavior (CF). LCMs were predominantly responsible for oscillation formations in the absence of considerable horizontal or vertical curves, whereas oscillations formed spontaneously near roadside work on an uphill segment. Regardless of the trigger, the features of oscillation propagations were similar in terms of propagation speed, oscillation duration, and amplitude. All observed cases initially exhibited a precursor phase, in which slow-and-go motions were localized. Some of them eventually transitioned into a well developed phase, in which oscillations propagated upstream in queue. LCMs were primarily responsible for the transition, although some transitions occurred without LCMs. Our findings also suggest that an oscillation has a regressive effect on car following behavior: a deceleration wave of an oscillation affects a timid driver (with larger response time and minimum spacing) to become less timid and an aggressive driver less aggressive, although this change may be short-lived. An extended framework of Newell’s CF is able to describe the regressive effects with two additional parameters with reasonable accuracy, as verified using vehicle trajectory data.
Resumo:
Realisation of the importance of real estate asset strategic decision making has inspired a burgeoning corporate real estate management (CREM) literature. Much of this criticises the poor alignment between strategic business direction and the ‘enabling’ physical environment. This is based on the understanding that corporate real estate assets represent the physical resource base that supports business, and can either complement or impede that business. In the hope of resolving this problem, CRE authors advocate a deeper integration of strategic and corporate real estate decisions. However this recommendation appears to be based on a relatively simplistic theoretical approach to organization where decision-making tends to be viewed as a rationally managed event rather than a complex process. Defining decision making as an isolated event has led to an uncritical acceptance of two basic assumptions: ubiquitous, conflict-free rationality and profit maximisation. These assumptions have encouraged prescriptive solutions that clearly lack the sophistication necessary to come to grips with the complexity of the built and organizational environment. Alternatively, approaching CREM decision making from a more sophisticated perspective, such as that of the “Carnegie School”, leads to conceptualise it as a ‘process’, creating room for bounded rationality, multiple goals, intra-organizational conflict, environmental matching, uncertainty avoidance and problem searching. It is reasonable to expect that such an approach will result in a better understanding of the organizational context, which will facilitate the creation of organizational objectives, assist with the formation of strategies, and ultimately will aid decision.
Resumo:
CRE (Corporate Real Estate) decisions should not simply deal with the management of individual facilities, but should especially be concerned with the relationships that a facility has with the corporate business strategy and with the larger real estate markets. Both the practice and the research of CRE management have historically tended to emphasize real estate issues and ignore the corporation’s business issues, causing real estate strategies to be disconnected from the goal and priorities of the corporation’s senior management. With regard to office cycles, a large number of econometric models have been proposed during the last 20 years. However, evidence from historical data and previous research in the field of real estate forecasting seem to agree only on one thing: the existence of interconnected property cycles that are concentrated on vacancy rates (demand). Vacancy also represents the linkage between the inadequacy of existing CRE strategies and the inability of existing econometric models to correctly forecast office rent cycles. Business cycles, across different industry sectors, have decreased from 5-7 years to 1-3 years today, yet corporations are still entering into leases of 5-10 years, causing hidden vacancy levels to rise. Possibly, once CRE strategies are totally in tune with the overall business, hidden vacancy will fade away providing forecasters with better quality data. The aim of this paper is not to investigate whether and when the supply-side will eventually evolve to provide flexible occupancy arrangements to accommodate corporate agility requirements, but rather to propose a general framework for corporations to improve the decision making process of their CRE executives, while emphasizing the importance of understanding the context as a precondition to effective real estate involvements.
Resumo:
Traffic oscillations are typical features of congested traffic flow that are characterized by recurring decelerations followed by accelerations. However, people have limited knowledge on this complex topic. In this research, 1) the impact of traffic oscillations on freeway crash occurrences has been measured using the matched case-control design. The results consistently reveal that oscillations have a more significant impact on freeway safety than the average traffic states. 2) Wavelet Transform has been adopted to locate oscillations' origins and measure their characteristics along their propagation paths using vehicle trajectory data. 3) Lane changing maneuver's impact on the immediate follower is measured and modeled. The knowledge and the new models generated from this study could provide better understanding on fundamentals of congested traffic; enable improvements to existing traffic control strategies and freeway crash countermeasures; and instigate people to develop new operational strategies with the objective of reducing the negative effects of oscillatory driving.
Resumo:
For the first time since 1601, a number of leading common law nations have almost simultaneously chosen to revise and place on the statute books the law relating to charity. The Politics of Charity examines the reasons for this and for the varying legislative outcomes. ----- ----- ----- This book examines the legal framework and political significance of charity, as developed within England & Wales, contrasts this with the experiences of other common law nations and explores the resulting implications for government/sector relationships in those countries. It suggests that charity law lies at the heart of the relationship between government and the non profit sector, that there is an unmistakeable political agenda driving charity law reform and that the differential in legislative outcomes reflects important differences in the policies pursued by the governments concerned.----- ----- ----- Looking at fundamentally different approaches of government towards the sector in the UK, Ireland, the US, New Zealand, Canada, Singapore and Australia, O’Halloran argues the results will have implications for the present workings of parliamentary democracy.----- ----- ----- The Politics of Charity will be a valuable resource for academics, regulators and legal practitioners as well as advanced and postgraduate students in law, politics and public policy.
Resumo:
Suburbanisation has been internationally a major phenomenon in the last decades. Suburb-to-suburb routes are nowadays the most widespread road journeys; and this resulted in an increment of distances travelled, particularly on faster suburban highways. The design of highways tends to over-simplify the driving task and this can result in decreased alertness. Driving behaviour is consequently impaired and drivers are then more likely to be involved in road crashes. This is particularly dangerous on highways where the speed limit is high. While effective countermeasures to this decrement in alertness do not currently exist, the development of in-vehicle sensors opens avenues for monitoring driving behaviour in real-time. The aim of this study is to evaluate in real-time the level of alertness of the driver through surrogate measures that can be collected from in-vehicle sensors. Slow EEG activity is used as a reference to evaluate driver's alertness. Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). Four different types of highways (driving scenario of 40 minutes each) are implemented through the variation of the road design (amount of curves and hills) and the roadside environment (amount of buildings and traffic). We show with Neural Networks that reduced alertness can be detected in real-time with an accuracy of 92% using lane positioning, steering wheel movement, head rotation, blink frequency, heart rate variability and skin conductance level. Such results show that it is possible to assess driver's alertness with surrogate measures. Such methodology could be used to warn drivers of their alertness level through the development of an in-vehicle device monitoring in real-time drivers' behaviour on highways, and therefore it could result in improved road safety.