474 resultados para Three-layer
Resumo:
Rail track undergoes complex loading patterns under moving traffic conditions compared to roads due to its continued and discontinued multi-layered structure, including rail, sleepers, ballast layer, sub-ballast layer, and subgrade. Particle size distributions (PSDs) of ballast, subballast, and subgrade layers can be critical in cyclic plastic deformation of rail track under moving traffic on frequent track degradation of rail tracks, especially at bridge transition zones. Conventional test approaches: static shear and cyclic single-point load tests are however unable to replicate actual loading patterns of moving train. Multi-ring shear apparatus; a new type of torsional simple shear apparatus, which can reproduce moving traffic conditions, was used in this study to investigate influence of particle size distribution of rail track layers on cyclic plastic deformation. Three particle size distributions, using glass beads were examined under different loading patterns: cyclic sin-gle-point load, and cyclic moving wheel load to evaluate cyclic plastic deformation of rail track under different loading methods. The results of these tests suggest that particle size distributions of rail track structural layers have significant impacts on cyclic plastic deformation under moving train load. Further, the limitations in con-ventional test methods used in laboratories to estimate the plastic deformation of rail track materials lead to underestimate the plastic deformation of rail tracks.
Resumo:
The purpose of this study was to establish a three-dimensional fluorescent tooth model to investigate bacterial viability against intra-canal medicaments across the thickness and surface of root dentine. Dental microbial biofilms (Enterococcus faecalis and Streptococcus mutans) were established on the external root surface and bacterial kill was monitored over time against intra-canal medicament (Ca(OH)2 ) using fluorescent microscopy in conjunction with BacLight SYTO9 and propidium iodide stains. An Olympus digital camera fitted to SZX16 fluorescent microscope captured images of bacterial cells in biofilms on the external root surface. Viability of biofilm was measured by calculating the total pixel area of green (viable bacteria) and red (non-viable bacteria) for each image using ImageJ® software. All data generated were assessed for normality and then analysed using a Mann-Whitney t-test. The viability of S. mutans biofilm following Ca(OH)2 treatment showed a significant decline compared with the untreated group (P = 0.0418). No significant difference was seen for E. faecalis biofilm between the Ca(OH)2 and untreated groups indicating Ca(OH)2 medicament is ineffective against E. faecalis biofilm. This novel three-dimensional fluorescent biofilm model provides a new clinically relevant tool for testing of medicaments against dental biofilms.
Resumo:
Layered graphitic materials exhibit new intriguing electronic structure and the search for new types of two-dimensional (2D) monolayer is of importance for the fabrication of next generation miniature electronic and optoelectronic devices. By means of density functional theory (DFT) computations, we investigated in detail the structural, electronic, mechanical and optical properties of the single-layer bismuth iodide (BiI3) nanosheet. Monolayer BiI3 is dynamically stable as confirmed by the computed phonon spectrum. The cleavage energy (Ecl) and interlayer coupling strength of bulk BiI3 are comparable to the experimental values of graphite, which indicates that the exfoliation of BiI3 is highly feasible. The obtained stress-strain curve shows that the BiI3 nanosheet is a brittle material with a breaking strain of 13%. The BiI3 monolayer has an indirect band gap of 1.57 eV with spin orbit coupling (SOC), indicating its potential application for solar cells. Furthermore, the band gap of BiI3 monolayer can be modulated by biaxial strain. Most interestingly, interfacing electrically active graphene with monolayer BiI3 nanosheet leads to enhanced light absorption compared to that in pure monolayer BiI3 nanosheet, highlighting its great potential applications in photonics and photovoltaic solar cells.
Resumo:
In response to limited research conducted on the practice of assessment for learning (AfL) in higher education and in Asian educational settings, this qualitative study, using sociocultural theories of learning and a multiple case study approach, investigates how AfL was implemented by three lecturers in one Vietnamese university. Findings revealed that the lecturers engaged with AfL principles and practices to some extent. However, despite the lecturers' significant efforts, Vietnamese sociocultural factors such as respect for harmony, hierarchy, and examination-oriented learning, impacted on their practice of AfL. This study therefore argues that AfL requires adaptation for it to be effective in the Vietnamese tertiary context.
Resumo:
This project investigated the calcium distributions of the skin, and the growth patterns of skin substitutes grown in the laboratory, using mathematical models. The research found that the calcium distribution in the upper layer of the skin is controlled by three different mechanisms, not one as previously thought. The research also suggests that tight junctions, which are adhesions between neighbouring skin cells, cannot be solely responsible for the differences in the growth patterns of skin substitutes and normal skin.
Resumo:
Blood cells participate in vital physiological processes, and their numbers are tightly regulated so that homeostasis is maintained. Disruption of key regulatory mechanisms underlies many blood-related Mendelian diseases but also contributes to more common disorders, including atherosclerosis. We searched for quantitative trait loci (QTL) for hematology traits through a whole-genome association study, because these could provide new insights into both hemopoeitic and disease mechanisms. We tested 1.8 million variants for association with 13 hematology traits measured in 6015 individuals from the Australian and Dutch populations. These traits included hemoglobin composition, platelet counts, and red blood cell and white blood cell indices. We identified three regions of strong association that, to our knowledge, have not been previously reported in the literature. The first was located in an intergenic region of chromosome 9q31 near LPAR1, explaining 1.5% of the variation in monocyte counts (best SNP rs7023923, p=8.9x10(-14)). The second locus was located on chromosome 6p21 and associated with mean cell erythrocyte volume (rs12661667, p=1.2x10(-9), 0.7% variance explained) in a region that spanned five genes, including CCND3, a member of the D-cyclin gene family that is involved in hematopoietic stem cell expansion. The third region was also associated with erythrocyte volume and was located in an intergenic region on chromosome 6q24 (rs592423, p=5.3x10(-9), 0.6% variance explained). All three loci replicated in an independent panel of 1543 individuals (p values=0.001, 9.9x10(-5), and 7x10(-5), respectively). The identification of these QTL provides new opportunities for furthering our understanding of the mechanisms regulating hemopoietic cell fate.
Resumo:
By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed hysteresis behavior of capacitance-voltage (C-V) characteristics of IZO/polyterpenol (PT)/C₆₀/pentacene/Au diodes, where PT layer is actively working as a hole-transport electron-blocking layer. The EFISHG measurement verified the presence of interface accumulated charges in the diodes, and showed that a space charge electric field from accumulated excess electrons (holes) that remain at the PT/C₆₀ (C₆₀/pentacene) interface is responsible for the hysteresis loop observed in the C-V characteristics.
Resumo:
Time-resolved electric field induced second harmonic generation technique was used to probe the carrier transients within double-layer pentacene-based MIM devices. Polyterpenol thin films fabricated from non-synthetic environmentally sustainable source were used as a blocking layer to assist in visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Results demonstrated that carrier transients were comprised of charging on electrodes, followed by carrier injection and charging of the interface. Polyterpenol was demonstrated to be a sound blocking material and can therefore be effectively used for probing of double-layer devices using EFISHG.
Resumo:
A non-synthetic polymer material, polyterpenol, was fabricated using a dry polymerization process namely RF plasma polymerization from an environmentally friendly monomer and its surface, optical and electrical properties investigated. Polyterpenol films were found to be transparent over the visible wavelength range, with a smooth surface with an average roughness of less than 0.4 nm and hardness of 0.4 GPa. The dielectric constant of 3.4 for polyterpenol was higher than that of the conventional polymer materials used in the organic electronic devices. The non-synthetic polymer material was then implemented as a surface modification of the gate insulator in field effect transistor (OFET) and the properties of the device were examined. In comparison to the similar device without the polymer insulating layer, the polyterpenol based OFET device showed significant improvements. The addition of the polyterpenol interlayer in the OFET shifted the threshold voltage significantly; + 20 V to -3 V. The presence of trapped charge was not observed in the polyterpenol interlayer. This assisted in the improvement of effective mobility from 0.012 to 0.021 cm 2/Vs. The switching property of the polyterpenol based OFET was also improved; 107 compared to 104. The results showed that the non-synthetic polyterpenol polymer film is a promising candidate of insulators in electronic devices.