488 resultados para Man-Machine Systems.
Resumo:
“What did you think you were doing?” Was the question posed by the conference organizers to me as the inventor and constructor of the first working Tangible Interfaces over 40 years ago. I think the question was intended to encourage me to talk about the underlying ideas and intentionality rather than describe an endless sequence of electronic bricks and that is what I shall do in this presentation. In the sixties the prevalent idea for a graphics interface was an analogue with sketching which was to somehow be understood by the computer as three dimensional form. I rebelled against this notion for reasons which I will explain in the presentation and instead came up with tangible physical three dimensional intelligent objects. I called these first prototypes “Intelligent Physical Modelling Systems which is a really dumb name for an obvious concept. I am eternally grateful to Hiroshi Ishii for coining the term “Tangible User Interfaces” - the same idea but with a much smarter name. Another motivator was user involvement in the design process, and that led to the Generator (1979) project with Cedric Price for the world’s first intelligent building capable of organizing itself in response to the appetites of the users. The working model of that project is in MoMA. And the same motivation led to a self builders design kit (1980) for Walter Segal which facilitated self-builders to design their own houses. And indeed as the organizer’s question implied, the motivation and intentionality of these projects developed over the years in step with advancing technology. The speaker will attempt to articulate these changes with medical, psychological and educational examples. Much of this later work indeed stemming from the Media Lab where we are talking. Related topics such as “tangible thinking” and “intelligent teacups” will be introduced and the presentation will end with some speculations for the future. The presentation will be given against a background of images of early prototypes many of which have never been previously published.
Resumo:
The transformation of urban spaces that occurs once darkness falls is simultaneously exhilarating and menacing, and over the past 20 months we have investigated the potential for mobile technology to help users manage their personal safety concerns in the city at night. Our findings subverted commonly held notions of vulnerability, with the threat of violence felt equally by men and women. But while women felt protected because of their mobile technology, men dismissed it as digital Man Mace. We addressed this macho design challenge by studying remote engineers in outback Australia to inspire our personal safety design prototype MATE (Mobile Artifact for Taming Environments).
Resumo:
This paper argues a model of open systems evolution based on evolutionary thermodynamics and complex system science, as a design paradigm for sustainable architecture. The mechanism of open system evolution is specified in mathematical simulations and theoretical discourses. According to the mechanism, the authors propose an intelligent building model of sustainable design by a holistic information system of the end-users, the building and nature. This information system is used to control the consumption of energy and material resources in building system at microscopic scale, to adapt the environmental performance of the building system to the natural environment at macroscopic scale, for an evolutionary emergence of sustainable performance of buildings.
Resumo:
The computation of compact and meaningful representations of high dimensional sensor data has recently been addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution algorithms. The application of such algorithms in real-time systems necessitates the development of sequential algorithms that perform feature extraction online. This paper presents an efficient online NLDR scheme, Sequential-Isomap, based on incremental singular value decomposition (SVD) and the Isomap method. Example simulations demonstrate the validity and significant potential of this technique in real-time applications such as autonomous systems.
Resumo:
The development of effective safety regulations for unmanned aircraft systems (UAS) is an issue of paramount concern for industry. The development of this framework is a prerequisite for greater UAS access to civil airspace and, subsequently, the continued growth of the UAS industry. The direct use of the existing conventionally piloted aircraft (CPA) airworthiness certification framework for the regulation of UAS has a number of limitations. The objective of this paper is to present one possible approach for the structuring of airworthiness regulations for civilian UAS. The proposed approach facilitates a more systematic, objective and justifiable method for managing the spectrum of risk associated with the diversity of UAS and their potential operations. A risk matrix is used to guide the development of an airworthiness certification matrix (ACM). The ACM provides a structured categorisation that facilitates the future tailoring of regulations proportionate to the levels of risk associated with the operation of the UAS. As a result, an objective and traceable link may be established between mandated regulations and the overarching objective for an equivalent level of safety to CPA. The ACM also facilitates the systematic consideration of a range of technical and operational mitigation strategies. For these reasons, the ACM is proposed as a suitable method for the structuring of an airworthiness certification framework for civil or commercially operated UAS (i.e., the UAS equivalent in function to the Part 21 regulations for civil CPA) and for the further structuring of requirements on the operation of UAS in un-segregated airspace.
Resumo:
In today's technological age, fraud has become more complicated, and increasingly more difficult to detect, especially when it is collusive in nature. Different fraud surveys showed that the median loss from collusive fraud is much greater than fraud perpetrated by a single person. Despite its prevalence and potentially devastating effects, collusion is commonly overlooked as an organizational risk. Internal auditors often fail to proactively consider collusion in their fraud assessment and detection efforts. In this paper, we consider fraud scenarios with collusion. We present six potentially collusive fraudulent behaviors and show their detection process in an ERP system. We have enhanced our fraud detection framework to utilize aggregation of different sources of logs in order to detect communication and have further enhanced it to render it system-agnostic thus achieving portability and making it generally applicable to all ERP systems.
Resumo:
In the scope of this study, ‘performance measurement’ includes the collection and presentation of relevant information that reflects progress in achieving organisational strategic aims and meeting the needs of stakeholders such as merchants, importers, exporters and other clients. Evidence shows that utilising information technology (IT) in customs matters supports import and export practices and ensures that supply chain management flows seamlessly. This paper briefly reviews some practical techniques for measuring performance. Its aim is to recommend a model for measuring the performance of information systems (IS): in this case, the Customs Information System (CIS) used by the Royal Malaysian Customs Department (RMCD).The study evaluates the effectiveness of CIS implementation measures in Malaysia from an IT perspective. A model based on IS theories will be used to assess the impact of CIS. The findings of this study recommend measures for evaluating the performance of CIS and its organisational impacts in Malaysia. It is also hoped that the results of the study will assist other Customs administrations evaluate the performance of their information systems.
Resumo:
Occlusion is a big challenge for facial expression recognition (FER) in real-world situations. Previous FER efforts to address occlusion suffer from loss of appearance features and are largely limited to a few occlusion types and single testing strategy. This paper presents a robust approach for FER in occluded images and addresses these issues. A set of Gabor based templates is extracted from images in the gallery using a Monte Carlo algorithm. These templates are converted into distance features using template matching. The resulting feature vectors are robust to occlusion. Occluded eyes and mouth regions and randomly places occlusion patches are used for testing. Two testing strategies analyze the effects of these occlusions on the overall recognition performance as well as each facial expression. Experimental results on the Cohn-Kanade database confirm the high robustness of our approach and provide useful insights about the effects of occlusion on FER. Performance is also compared with previous approaches.
Resumo:
In this paper, the performance of voltage-source converter-based shunt and series compensators used for load voltage control in electrical power distribution systems has been analyzed and compared, when a nonlinear load is connected across the load bus. The comparison has been made based on the closed-loop frequency resopnse characteristics of the compensated distribution system. A distribution static compensator (DSTATCOM) as a shunt device and a dynamic voltage restorer (DVR) as a series device are considered in the voltage-control mode for the comparison. The power-quality problems which these compensator address include voltage sags/swells, load voltage harmonic distortions, and unbalancing. The effect of various system parameters on the control performance of the compensator can be studied using the proposed analysis. In particular, the performance of the two compensators are compared with the strong ac supply (stiff source) and weak ac-supply (non-still source) distribution system. The experimental verification of the analytical results derived has been obtained using a laboratory model of the single-phase DSTATCOM and DVR. A generalized converter topology using a cascaded multilevel inverter has been proposed for the medium-voltage distribution system. Simulation studies have been performed in the PSCAD/EMTDC software to verify the results in the three-phase system.
Resumo:
One of the main challenges of slow speed machinery condition monitoring is that the energy generated from an incipient defect is too weak to be detected by traditional vibration measurements due to its low impact energy. Acoustic emission (AE) measurement is an alternative for this as it has the ability to detect crack initiations or rubbing between moving surfaces. However, AE measurement requires high sampling frequency and consequently huge amount of data are obtained to be processed. It also requires expensive hardware to capture those data, storage and involves signal processing techniques to retrieve valuable information on the state of the machine. AE signal has been utilised for early detection of defects in bearings and gears. This paper presents an online condition monitoring (CM) system for slow speed machinery, which attempts to overcome those challenges. The system incorporates relevant signal processing techniques for slow speed CM which include noise removal techniques to enhance the signal-to-noise and peak-holding down sampling to reduce the burden of massive data handling. The analysis software works under Labview environment, which enables online remote control of data acquisition, real-time analysis, offline analysis and diagnostic trending. The system has been fully implemented on a site machine and contributing significantly to improve the maintenance efficiency and provide a safer and reliable operation.
Resumo:
The modern society has come to expect the electrical energy on demand, while many of the facilities in power systems are aging beyond repair and maintenance. The risk of failure is increasing with the aging equipments and can pose serious consequences for continuity of electricity supply. As the equipments used in high voltage power networks are very expensive, economically it may not be feasible to purchase and store spares in a warehouse for extended periods of time. On the other hand, there is normally a significant time before receiving equipment once it is ordered. This situation has created a considerable interest in the evaluation and application of probability methods for aging plant and provisions of spares in bulk supply networks, and can be of particular importance for substations. Quantitative adequacy assessment of substation and sub-transmission power systems is generally done using a contingency enumeration approach which includes the evaluation of contingencies, classification of the contingencies based on selected failure criteria. The problem is very complex because of the need to include detailed modelling and operation of substation and sub-transmission equipment using network flow evaluation and to consider multiple levels of component failures. In this thesis a new model associated with aging equipment is developed to combine the standard tools of random failures, as well as specific model for aging failures. This technique is applied in this thesis to include and examine the impact of aging equipments on system reliability of bulk supply loads and consumers in distribution network for defined range of planning years. The power system risk indices depend on many factors such as the actual physical network configuration and operation, aging conditions of the equipment, and the relevant constraints. The impact and importance of equipment reliability on power system risk indices in a network with aging facilities contains valuable information for utilities to better understand network performance and the weak links in the system. In this thesis, algorithms are developed to measure the contribution of individual equipment to the power system risk indices, as part of the novel risk analysis tool. A new cost worth approach was developed in this thesis that can make an early decision in planning for replacement activities concerning non-repairable aging components, in order to maintain a system reliability performance which economically is acceptable. The concepts, techniques and procedures developed in this thesis are illustrated numerically using published test systems. It is believed that the methods and approaches presented, substantially improve the accuracy of risk predictions by explicit consideration of the effect of equipment entering a period of increased risk of a non-repairable failure.
Resumo:
This paper investigated the phenomenon of prejudice among ISD project members. We presented a theoretical discussion followed by one qualitative and one quantitative study. In the qualitative study, we interviewed different members of the project teams to understand the different types of prejudice possessed by team members. Results of this interview study led to the development of prejudice scales for IT members and users, which was used in the quantitative study. We surveyed 128 ISD teams and found that prejudice was related task and relationship conflict, satisfaction and willingness to work together in the future. Furthermore, prejudice exerts stronger influences on users than IT members in terms of increasing task and relationship conflicts and decreasing goal commitment.
Resumo:
Gay community media functions as a system with three nodes, in which the flows of information and capital theoretically benefit all parties: the gay community gains a sense of cohesion and citizenship through media; the gay media outlets profit from advertisers’ capital; and advertisers recoup their investments in lucrative ‘pink dollar’ revenue. But if a necessary corollary of all communication systems is error or noise, where—and what—are the errors in this system? In this paper we argue that the ‘error’ in the gay media system is Queerness, and that the gay media system ejects (in a process of Kristevan abjection) these Queer identities in order to function successfully. We examine the ways in which Queer identities are excluded from representation in such media through a discourse and content analysis of The Sydney Star Observer (Australia’s largest gay and lesbian paper). First, we analyse the way Queer bodies are excluded from the discourses that construct and reinforce both the ideal gay male body and the notions of homosexual essence required for that body to be meaningful. We then argue that abject Queerness returns in the SSO’s discourses of public health through the conspicuous absence of the AIDS-inflicted body (which we read as the epitome of the abject Queer), since this absence paradoxically conjures up a trace of that which the system tries to expel. We conclude by arguing that because the ‘Queer error’ is integral to the SSO, gay community media should practise a politics of Queer inclusion rather than exclusion.
Resumo:
In a clinical setting, pain is reported either through patient self-report or via an observer. Such measures are problematic as they are: 1) subjective, and 2) give no specific timing information. Coding pain as a series of facial action units (AUs) can avoid these issues as it can be used to gain an objective measure of pain on a frame-by-frame basis. Using video data from patients with shoulder injuries, in this paper, we describe an active appearance model (AAM)-based system that can automatically detect the frames in video in which a patient is in pain. This pain data set highlights the many challenges associated with spontaneous emotion detection, particularly that of expression and head movement due to the patient's reaction to pain. In this paper, we show that the AAM can deal with these movements and can achieve significant improvements in both the AU and pain detection performance compared to the current-state-of-the-art approaches which utilize similarity-normalized appearance features only.