623 resultados para Engineering, Mechanical|Engineering, Robotics
Resumo:
This paper presents the results of a qualitative action-research inquiry into how a highly diverse cohort of post-graduate students could develop significant capacity in sustainable development within a single unit (course), in this case a compulsory component of four built environment masters programs. The method comprised applying threshold learning theory within the technical discipline of sustainable development, to transform student understanding of sustainable business practice in the built environment. This involved identifying a number of key threshold concepts, which once learned would provide a pathway to having a transformational learning experience. Curriculum was then revised, to focus on stepping through these targeted concepts using a scaffolded, problem-based-learning approach. Challenges included a large class size of 120 students, a majority of international students, and a wide span of disciplinary backgrounds across the spectrum of built environment professionals. Five ‘key’ threshold learning concepts were identified and the renewed curriculum was piloted in Semester 2 of 2011. The paper presents details of the study and findings from a mixed-method evaluation approach through the semester. The outcomes of this study will be used to inform further review of the course in 2012, including further consideration of the threshold concepts. In future, it is anticipated that this case study will inform a framework for rapidly embedding sustainability within curriculum.
Resumo:
The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.
Resumo:
In recent years, interest in tissue engineering and its solutions has increased considerably. In particular, scaffolds have become fundamental tools in bone graft substitution and are used in combination with a variety of bio-agents. However, a long-standing problem in the use of these conventional scaffolds lies in the impossibility of re-loading the scaffold with the bio-agents after implantation. This work introduces the magnetic scaffold as a conceptually new solution. The magnetic scaffold is able, via magnetic driving, to attract and take up in vivo growth factors, stem cells or other bio-agents bound to magnetic particles. The authors succeeded in developing a simple and inexpensive technique able to transform standard commercial scaffolds made of hydroxyapatite and collagen in magnetic scaffolds. This innovative process involves dip-coating of the scaffolds in aqueous ferrofluids containing iron oxide nanoparticles coated with various biopolymers. After dip-coating, the nanoparticles are integrated into the structure of the scaffolds, providing the latter with magnetization values as high as 15 emu g�1 at 10 kOe. These values are suitable for generating magnetic gradients, enabling magnetic guiding in the vicinity and inside the scaffold. The magnetic scaffolds do not suffer from any structural damage during the process, maintaining their specific porosity and shape. Moreover, they do not release magnetic particles under a constant flow of simulated body fluids over a period of 8 days. Finally, preliminary studies indicate the ability of the magnetic scaffolds to support adhesion and proliferation of human bone marrow stem cells in vitro. Hence, this new type of scaffold is a valuable candidate for tissue engineering applications, featuring a novel magnetic guiding option.
Resumo:
Glioblastoma multiforme (GBM) is a malignant astrocytoma of the central nervous system associated with a median survival time of 15 months, even with aggressive therapy. This rapid progression is due in part to diffuse infiltration of single tumor cells into the brain parenchyma, which is thought to involve aberrant interactions between tumor cells and the extracellular matrix (ECM). Here, we test the hypothesis that mechanical cues from the ECM contribute to key tumor cell properties relevant to invasion. We cultured a series of glioma cell lines (U373-MG, U87-MG, U251-MG, SNB19, C6) on fibronectin-coated polymeric ECM substrates of defined mechanical rigidity and investigated the role of ECM rigidity in regulating tumor cell structure, migration, and proliferation. On highly rigid ECMs, tumor cells spread extensively, form prominent stress fibers and mature focal adhesions, and migrate rapidly. As ECM rigidity is lowered to values comparable with normal brain tissue, tumor cells appear rounded and fail to productively migrate. Remarkably, cell proliferation is also strongly regulated by ECM rigidity, with cells dividing much more rapidly on rigid than on compliant ECMs. Pharmacologic inhibition of nonmuscle myosin II–based contractility blunts this rigidity-sensitivity and rescues cell motility on highly compliant substrates. Collectively, our results provide support for a novel model in which ECM rigidity provides a transformative, microenvironmental cue that acts through actomyosin contractility to regulate the invasive properties of GBM tumor cells.
Resumo:
Presentation by Dr Caroline Grant, Science & Engineering Faculty, IHBI, at Managing your research data seminar, 2012
Resumo:
Science, technology, engineering and mathematics (STEM) has become an educational package emerging throughout the world (e.g. UK, China, US & Australia). Although science, technology and mathematics are taught in schools and engineering education occurs in universities, there appear to be few if any explicit engineering education programs in primary and junior secondary schools. A stronger inclusion of engineering education at these levels could assist students to make informed decisions about career opportunities in STEM-related fields. This paper suggests how engineering education can be integrated with other key learning areas such as English, mathematics, science, history and geography within the new Australian Curriculum.
Resumo:
Industrial transformer is one of the most critical assets in the power and heavy industry. Failures of transformers can cause enormous losses. The poor joints of the electrical circuit on transformers can cause overheating and results in stress concentration on the structure which is the major cause of catastrophic failure. Few researches have been focused on the mechanical properties of industrial transformers under overheating thermal conditions. In this paper, both mechanical and thermal properties of industrial transformers are jointly investigated using Finite Element Analysis (FEA). Dynamic response analysis is conducted on a modified transformer FEA model, and the computational results are compared with experimental results from literature to validate this simulation model. Based on the FEA model, thermal stress is calculated under different temperature conditions. These analysis results can provide insights to the understanding of the failure of transformers due to overheating, therefore are significant to assess winding fault, especially to the manufacturing and maintenance of large transformers.
Resumo:
Environmental engineers are increasingly being required to have knowledge about sustainability in their professional careers. Accreditation mechanisms for including sustainability in degree program requirements exist and are gradually being implemented by Engineers Australia. However, true integration of sustainability material into higher and vocational education curricula is still low, particularly outside the environmental engineering degree programs. In addition to environmental engineering, it is crucial for engineering across the specialisations, to be exposed to sustainability concepts and theories. This paper will demonstrate how sustainability as a ‘critical literacy’ can be designed for teaching within mainstream engineering education, using a current Australian project as a case study. The project demonstrates that sustainability education for all engineers is not only possible, but that there is international interest in collaborating in such an educational initiative. A pilot trial of the Introductory Module was undertaken in Semester 1 2004 and Version 2 trials are now proceeding with a number of universities and organisations nationally and internationally. Further modules are currently being developed in collaboration with Engineers Australia and UNESCO. The program is a finalist in the 2005 Banksia Awards (Category 11, Environmental Leadership Education and Training).
Resumo:
Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.
Resumo:
Mammographic density (MD) is a strong heritable risk factor for breast cancer, and may decrease with increasing parity. However, the biomolecular basis for MD-associated breast cancer remains unclear, and systemic hormonal effects on MD-associated risk is poorly understood. This study assessed the effect of murine peripartum states on high and low MD tissue maintained in a xenograft model of human MD. Method High and low MD human breast tissues were precisely sampled under radiographic guidance from prophylactic mastectomy specimens of women. The high and low MD tissues were maintained in separate vascularised biochambers in nulliparous or pregnant SCID mice for 4 weeks, or mice undergoing postpartum involution or lactation for three additional weeks. High and low MD biochamber material was harvested for histologic and radiographic comparisons during various murine peripartum states. High and low MD biochamber tissues in nulliparous mice were harvested at different timepoints for histologic and radiographic comparisons. Results High MD biochamber tissues had decreased stromal (p = 0.0027), increased adipose (p = 0.0003) and a trend to increased glandular tissue areas (p = 0.076) after murine postpartum involution. Stromal areas decreased (p = 0.042), while glandular (p = 0.001) and adipose areas (p = 0.009) increased in high MD biochamber tissues during lactation. A difference in radiographic density was observed in high (p = 0.0021) or low MD biochamber tissues (p = 0.004) between nulliparous, pregnant and involution groups. No differences in tissue composition were observed in high or low MD biochamber tissues maintained for different durations, although radiographic density increased over time. Conclusion High MD biochamber tissues had measurable histologic changes after postpartum involution or lactation. Alterations in radiographic density occurred in biochamber tissues between different peripartum states and over time. These findings demonstrate the dynamic nature of the human MD xenograft model, providing a platform for studying the biomolecular basis of MD-associated cancer risk. © 2013 Springer Science+Business Media New York.
Resumo:
Regenerative endodontics aims to preserve, repair or regenerate the dental pulp tissue. Dental pulp stem cells, have a potential use in dental tissue generation. However, specific requirements to drive the dental tissue generation are still obscured. We established an in vivo model for studying the survival of dental pulp cells (DPC) and their potential to generate dental pulp tissue. DPC were mixed with collagen scaffold with or without slow release bone morphogenic protein 4 (BMP-4) and fibroblast growth factor 2 (FGF2). The cell suspension was transplanted into a vascularized tissue engineering chamber in the rat groin. Tissue constructs were harvested after 2, 4, 6, and 8 weeks and processed for histomorphological and immunohistochemical analysis. After 2 weeks newly formed tissue with new blood vessel formation were observed inside the chamber. DPC were found around dentin, particularly around the vascular pedicle and also close to the gelatin microspheres. Cell survival, was confirmed up to 8 weeks after transplantation. Dentin Sialophosphoprotein (DSPP) positive matrix production was detected in the chamber, indicating functionality of dental pulp progenitor cells. This study demonstrates the potential of our tissue engineering model to study rat dental pulp cells and their behavior in dental pulp regeneration, for future development of an alternative treatment using these techniques.
Resumo:
Based on the characterization by Atomic Force Microscopy (AFM), we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young’s moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton (CSK) and the intracellular fluid when the fixed chondrocytes is mainly governed by their intracellular fluid which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic (PHE) constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.
Resumo:
A growing interest is seen for designing intelligent environments that support personally meaningful, sociable and rich everyday experiences. In this paper we describe an intelligent, large screen display called Panorama that is aimed at supporting and enhancing social awareness within an academic work environment. Panorama is not intended to provide instrumental or other productivity related information. Rather, the goal of Panorama is to enhance social awareness by providing interpersonal and rich information related to co-workers and their everyday interactions in the department. A two-phase assessment of Panorama showed to promote curiosity and interest in exploring different activities in the environment.
Resumo:
Health care systems are highly dynamic not just due to developments and innovations in diagnosis and treatments, but also by virtue of emerging management techniques supported by modern information and communication technology. A multitude of stakeholders such as patients, nurses, general practitioners or social carers can be integrated by modeling complex interactions necessary for managing the provision and consumption of health care services. Furthermore, it is the availability of Service-oriented Architecture (SOA) that supports those integration efforts by enabling the flexible and reusable composition of autonomous, loosely-coupled and web-enabled software components. However, there is still the gap between SOA and predominantly business-oriented perspectives (e.g. business process models). The alignment of both views is crucial not just for the guided development of SOA but also for the sustainable evolution of holistic enterprise architectures. In this paper, we combine the Semantic Object Model (SOM) and the Business Process Modelling Notation (BPMN) towards a model-driven approach to service engineering. By addressing a business system in Home Telecare and deriving a business process model, which can eventually be controlled and executed by machines; in particular by composed web services, the full potential of a process-centric SOA is exploited.