452 resultados para deep level centres


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The third edition of the Australian Standard AS1742 Manual of Uniform Traffic Control Devices Part 7 provides a method of calculating the sighting distance required to safely proceed at passive level crossings based on the physics of moving vehicles. This required distance becomes greater with higher line speeds and slower, heavier vehicles so that it may return quite a long sighting distance. However, at such distances, there are also concerns around whether drivers would be able to reliably identify a train in order to make an informed decision regarding whether it would be safe to proceed across the level crossing. In order to determine whether drivers are able to make reliable judgements to proceed in these circumstances, this study assessed the distance at which a train first becomes identifiable to a driver as well as their, ability to detect the movement of the train. A site was selected in Victoria, and 36 participants with good visual acuity observed 4 trains in the 100-140 km/h range. While most participants could detect the train from a very long distance (2.2 km on average), they could only detect that the train was moving at much shorter distances (1.3 km on average). Large variability was observed between participants, with 4 participants consistently detecting trains later than other participants. Participants tended to improve in their capacity to detect the presence of the train with practice, but a similar trend was not observed for detection of the movement of the train. Participants were consistently poor at accurately judging the approach speed of trains, with large underestimations at all investigated distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are 23,500 level crossings in Australia. In these types of environments it is important to understand what human factor issues are present and how road users and pedestrians engage with crossings. A series of on-site observations were performed over a 2-day period at a 3-track active crossing. This was followed by 52 interviews with local business owners and members of the public. Data were captured using a manual-coding scheme for recording and categorising violations. Over 700 separate road user and pedestrian violations were recorded, with representations in multiple categories. Time stamping revealed that the crossing was active for 59% of the time in some morning periods. Further, trains could take up to 4-min to arrive following its first activation. Many pedestrians jaywalked under side rails and around active boom gates. In numerous cases pedestrians put themselves at risk in order to beat or catch the approaching train, ignored signs to stop walking when the lights were flashing. Analysis of interview data identified themes associated with congestion, safety, and violations. This work offers insight into context specific issues associated with active level crossing protection.