566 resultados para Surface condition
Resumo:
A major challenge in studying coupled groundwater and surface-water interactions arises from the considerable difference in the response time scales of groundwater and surface-water systems affected by external forcings. Although coupled models representing the interaction of groundwater and surface-water systems have been studied for over a century, most have focused on groundwater quantity or quality issues rather than response time. In this study, we present an analytical framework, based on the concept of mean action time (MAT), to estimate the time scale required for groundwater systems to respond to changes in surface-water conditions. MAT can be used to estimate the transient response time scale by analyzing the governing mathematical model. This framework does not require any form of transient solution (either numerical or analytical) to the governing equation, yet it provides a closed form mathematical relationship for the response time as a function of the aquifer geometry, boundary conditions, and flow parameters. Our analysis indicates that aquifer systems have three fundamental time scales: (i) a time scale that depends on the intrinsic properties of the aquifer; (ii) a time scale that depends on the intrinsic properties of the boundary condition, and; (iii) a time scale that depends on the properties of the entire system. We discuss two practical scenarios where MAT estimates provide useful insights and we test the MAT predictions using new laboratory-scale experimental data sets.
Resumo:
The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs--Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs--Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle.
Resumo:
Enhanced catalytic performance of zeoltes via the plasmonic effect of gold nanoparticles has been discovered to be closely correlated with the molecular polarity of reactants. The intensified polarised electrostatic field of Na+ in NaY plays a critical role in stretching the C=O bond of aldehydes to improve the reaction rate.
Resumo:
Abstract: Nanostructured titanium dioxide (TiO2) electrodes, prepared by anodization of titanium, are employed to probe the electron-transfer process of cytochrome b5 (cyt b5) by surface-enhanced resonance Raman (SERR) spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, achieved by raising the anodization voltage from 10 to 20 V, the enhancement factor increases from 2.4 to 8.6, which is rationalized by calculations of the electric field enhancement. Cyt b 5 is immobilized on TiO2 under preservation of its native structure but it displays a non-ideal redox behavior due to the limited conductivity of the electrode material. The electron-transfer efficiency which depends on the crystalline phase of TiO2 has to be improved by appropriate doping for applications in bioelectrochemistry. Nanostructured TiO2 electrodes are employed to probe the electron-transfer process of cytochrome b5 by surface-enhanced resonance Raman spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, the enhancement factor increases, which can be attributed to the electric field enhancement. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Silver nanoparticles with identical plasmonic properties but different surface functionalities are synthesized and tested as chemically selective surface-enhanced resonance Raman (SERR) amplifiers in a two-component protein solution. The surface plasmon resonances of the particles are tuned to 413 nm to match the molecular resonance of protein heme cofactors. Biocompatible functionalization of the nanoparticles with a thin film of chitosan yields selective SERR enhancement of the anionic protein cytochrome b5, whereas functionalization with SiO2 amplifies only the spectra of the cationic protein cytochrome c. As a result, subsequent addition of the two differently functionalized particles yields complementary information on the same mixed protein sample solution. Finally, the applicability of chitosan-coated Ag nanoparticles for protein separation was tested by in situ resonance Raman spectroscopy.
Resumo:
Silica coated Ag nanoparticles with defined surface plasmon resonances are used to selectively detect and analyze protein cofactors in solution and on interfaces via surface enhanced resonance Raman spectroscopy. The silica coating has a surprisingly small effect on optical amplification but minimizes unwanted interactions between the protein and the nanoparticle.
Resumo:
Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.
Resumo:
Self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was prepared on indium tin oxide (ITO) electrode by spontaneous adsorption from dimethylformamide (DMF) solution containing 4α-CoIITAPc. The SAM of 4α-CoIITAPc formed on ITO electrode was characterized by cyclic voltammetry, Raman and UV–visible spectroscopic techniques. The cyclic voltammogram (CV) of 4α-CoIITAPc SAM shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) was calculated by integrating the charge under the anodic wave corresponding to CoII oxidation and it was found to be 2.25 × 10−10 mol cm−2. Raman spectrum obtained for the SAM of 4α-CoIITAPc on ITO surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Further, the –NH2 bending mode of vibration was absent for the SAM of 4α-CoIITAPc on ITO surface which indirectly confirmed that all the amino groups of 4α-CoIITAPc are involved in bonding with ITO surface. UV–visible spectrum for the SAM of 4α-CoIITAPc on ITO surface shows an intense B-band, Q-band and n–π∗ transition with slight broadening when compared to that of 4α-CoIITAPc in DMF.
Resumo:
This paper demonstrates a renewed procedure for the quantification of surface-enhanced Raman scattering (SERS) enhancement factors with improved precision. The principle of this method relies on deducting the resonance Raman scattering (RRS) contribution from surface-enhanced resonance Raman scattering (SERRS) to end up with the surface enhancement (SERS) effect alone. We employed 1,8,15,22-tetraaminophthalocyanato-cobalt(II) (4α-CoIITAPc), a resonance Raman- and electrochemically redox-active chromophore, as a probe molecule for RRS and SERRS experiments. The number of 4α-CoIITAPc molecules contributing to RRS and SERRS phenomena on plasmon inactive glassy carbon (GC) and plasmon active GC/Au surfaces, respectively, has been precisely estimated by cyclic voltammetry experiments. Furthermore, the SERS substrate enhancement factor (SSEF) quantified by our approach is compared with the traditionally employed methods. We also demonstrate that the present approach of SSEF quantification can be applied for any kind of different SERS substrates by choosing an appropriate laser line and probe molecule.
Resumo:
This article describes the detection of DNA mutations using novel Au-Ag coated GaN substrate as SERS (surface-enhanced Raman spectroscopy) diagnostic platform. Oligonucleotide sequences corresponding to the BCR-ABL (breakpoint cluster region-Abelson) gene responsible for development of chronic myelogenous leukemia were used as a model system to demonstrate the discrimination between the wild type and Met244Val mutations. The thiolated ssDNA (single-strand DNA) was immobilized on the SERS-active surface and then hybridized to a labeled target sequence from solution. An intense SERS signal of the reporter molecule MGITC was detected from the complementary target due to formation of double helix. The SERS signal was either not observed, or decreased dramatically for a negative control sample consisting of labeled DNA that was not complementary to the DNA probe. The results indicate that our SERS substrate offers an opportunity for the development of novel diagnostic assays.
Resumo:
Frequency Domain Spectroscopy (FDS) is successfully being used to assess the insulation condition of oil filled power transformers. However, it has to date only been implemented on de-energized transformers, which requires the transformers to be shut down for an extended period which can result in significant costs. To solve this issue, a method of implementing FDS under energized condition is proposed here. A chirp excitation waveform is used to replace the conventional sinusoidal waveform to reduce the measurement time in this method. Investigation of the dielectric response under the influence of a high voltage stress at power frequency is reported based on experimental results. To further understand the insulation ageing process, the geometric capacitance effect is removed to enhance the detection of the ageing signature. This enhancement enables the imaginary part of admittance to be used as a new indicator to assess the ageing status of the insulation.
Resumo:
Purpose To report an unusual case of a late-stage reactivation of immune stromal keratitis associated with herpes zoster ophthalmicus (HZO), occurring without any apparent predisposing factors, more than 4 years after an acute zoster dermatomal rash. Significant corneal hypoesthesia and a central band keratopathy developed within 6 months of the late-stage reactivation. The clinical case management, issues associated with management, and management options are discussed, including the use of standardized, regulatory approved, antibacterial medical honey. Case Report An 83-year-old woman presented for routine review with a reactivation of right anterior stromal keratitis and mild anterior uveitis, occurring more than 4 years after an acute HZO dermatomal rash and an associated initial episode of anterior stromal keratitis. Corneal sensation became markedly impaired, and over the subsequent 6 months, a right central band keratopathy developed despite oral antiviral and topical steroid therapy. Visual acuity with pinhole was reduced to 20/100 in the affected eye and moderate irritation and epiphora were experienced. The patient declined the surgical intervention options of chelation, lamellar keratectomy, and phototherapeutic keratectomy to treat the band keratopathy. Longer-term management has involved preservative-free artificial tears, eyelid hygiene, standardized antibacterial medical honey, topical nonpreserved steroid, and UV-protective wraparound sunglasses. The clinical condition has improved over 14 months with this ocular surface management regimen, and visual acuity of 20/30 is currently achieved in a comfortable eye. Conclusions The chronic and recurrent nature of HZO can be associated with significant corneal morbidity, even many years after the initial zoster episode. Long-term review and management of patients with a history of herpes zoster stromal keratitis are indicated following the initial corneal involvement. Standardized antibacterial medical honey can be considered in the management of the chronic ocular surface disease associated with HZO and warrants further evaluation in clinical trials.