549 resultados para Spatial Prediction Maps
Resumo:
We examine enterprise social network usage data obtained from a community of store managers in a leading Australian retail organization, over a period of fifteen months. Our interest in examining this data is in spatial preferences by the network users, that is, to ascertain who is communicating with whom and where. We offer several contrasting theoretical perspectives for spatial preference patterns and examine these against data collected from over 12,000 messages exchanged between 530 managers in 897 stores. Our findings show that interactions can generally be characterized by individual preferences for local communication but also that two different user communities exist – locals and globals. We develop empirical profiles for these social network user communities and outline implications for theories on spatial influences on communication behaviours on enterprise social networks.
Resumo:
Collaboration between neuroscience and architecture is emerging as a key field of research as demonstrated in recent times by development of the Academy of Neuroscience for Architecture (ANFA) and other societies. Neurological enquiry of affect and spatial experience from a design perspective remains in many instances unchartered. Research using portable near infrared spectroscopy (fNIRs) - an emerging non-invasive neuro-imaging device, is proving convincing in its ability to detect emotional responses to visual, spatio-auditory and task based stimuli. This innovation provides a firm basis to potentially track cortical activity in the appraisal of architectural environments. Additionally, recent neurological studies have sought to explore the manifold sensory abilities of the visually impaired to better understand spatial perception in general. Key studies reveal that early blind participants perform as well as sighted due to higher auditory and somato-sensory spatial acuity. Studies also report pleasant and unpleasant emotional responses within certain interior environments revealing a deeper perceptual sensitivity than would be expected. Comparative fNIRS studies between the sighted and blind concerning spatial experience has the potential to provide greater understanding of emotional responses to architectural environments. Supported by contemporary theories of architectural aesthetics, this paper presents a case for the use of portable fNIRS imaging in the assessment of emotional responses to spatial environments experienced by both blind and sighted. The aim of the paper is to outline the implications of fNIRS upon spatial research and practice within the field of architecture and points to a potential taxonomy of particular formations of space and affect.
Resumo:
To the trained-eye, experts can often identify a team based on their unique style of play due to their movement, passing and interactions. In this paper, we present a method which can accurately determine the identity of a team from spatiotemporal player tracking data. We do this by utilizing a formation descriptor which is found by minimizing the entropy of role-specific occupancy maps. We show how our approach is significantly better at identifying different teams compared to standard measures (i.e., shots, passes etc.). We demonstrate the utility of our approach using an entire season of Prozone player tracking data from a top-tier professional soccer league.
Resumo:
This work deals with estimators for predicting when parametric roll resonance is going to occur in surface vessels. The roll angle of the vessel is modeled as a second-order linear oscillatory system with unknown parameters. Several algorithms are used to estimate the parameters and eigenvalues of the system based on data gathered experimentally on a 1:45 scale model of a tanker. Based on the estimated eigenvalues, the system predicts whether or not parametric roll occurred. A prediction accuracy of 100% is achieved for regular waves, and up to 87.5% for irregular waves.
Resumo:
Complex behaviour of air flow in the buildings makes it difficult to predict. Consequently, architects use common strategies for designing buildings with adequate natural ventilation. However, each climate needs specific strategies and there are not many heuristics for subtropical climate in literature. Furthermore, most of these common strategies are based on low-rise buildings and their performance for high-rise buildings might be different due to the increase of the wind speed with increase in the height. This study uses Computational Fluid Dynamics (CFD) to evaluate these rules of thumb for natural ventilation for multi-residential buildings in subtropical climate. Four design proposals for multi-residential towers with natural ventilation which were produced in intensive two days charrette were evaluated using CFD. The results show that all the buildings reach acceptable level of wind speed in living areas and poor amount of air flow in sleeping areas.
Resumo:
Wi-Fi is a commonly available source of localization information in urban environments but is challenging to integrate into conventional mapping architectures. Current state of the art probabilistic Wi-Fi SLAM algorithms are limited by spatial resolution and an inability to remove the accumulation of rotational error, inherent limitations of the Wi-Fi architecture. In this paper we leverage the low quality sensory requirements and coarse metric properties of RatSLAM to localize using Wi-Fi fingerprints. To further improve performance, we present a novel sensor fusion technique that integrates camera and Wi-Fi to improve localization specificity, and use compass sensor data to remove orientation drift. We evaluate the algorithms in diverse real world indoor and outdoor environments, including an office floor, university campus and a visually aliased circular building loop. The algorithms produce topologically correct maps that are superior to those produced using only a single sensor modality.
Resumo:
Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.
Resumo:
Objectives Recent research has shown that machine learning techniques can accurately predict activity classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test machine learning models for predicting activity type in preschool-aged children. Design Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits. Methods Eleven children aged 3–6 years (mean age = 4.8 ± 0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Results Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, respectively. Conclusions Ensemble machine learning approaches such as Deep Learning Ensemble Network can accurately predict activity type from accelerometer data in preschool children.
Resumo:
An early molecular response to DNA double-strand breaks (DSBs) is phosphorylation of the Ser-139 residue within the terminal SQEY motif of the histone H2AX1,2. This phosphorylation of H2AX is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)3. The phosphorylated form of H2AX, referred to as γH2AX, spreads to adjacent regions of chromatin from the site of the DSB, forming discrete foci, which are easily visualized by immunofluorecence microscopy3. Analysis and quantitation of γH2AX foci has been widely used to evaluate DSB formation and repair, particularly in response to ionizing radiation and for evaluating the efficacy of various radiation modifying compounds and cytotoxic compounds Given the exquisite specificity and sensitivity of this de novo marker of DSBs, it has provided new insights into the processes of DNA damage and repair in the context of chromatin. For example, in radiation biology the central paradigm is that the nuclear DNA is the critical target with respect to radiation sensitivity. Indeed, the general consensus in the field has largely been to view chromatin as a homogeneous template for DNA damage and repair. However, with the use of γH2AX as molecular marker of DSBs, a disparity in γ-irradiation-induced γH2AX foci formation in euchromatin and heterochromatin has been observed5-7. Recently, we used a panel of antibodies to either mono-, di- or tri- methylated histone H3 at lysine 9 (H3K9me1, H3K9me2, H3K9me3) which are epigenetic imprints of constitutive heterochromatin and transcriptional silencing and lysine 4 (H3K4me1, H3K4me2, H3K4me3), which are tightly correlated actively transcribing euchromatic regions, to investigate the spatial distribution of γH2AX following ionizing radiation8. In accordance with the prevailing ideas regarding chromatin biology, our findings indicated a close correlation between γH2AX formation and active transcription9. Here we demonstrate our immunofluorescence method for detection and quantitation of γH2AX foci in non-adherent cells, with a particular focus on co-localization with other epigenetic markers, image analysis and 3Dmodeling.
Resumo:
This thesis contains a mathematical investigation of the existence of travelling wave solutions to singularly perturbed advection-reaction-diffusion models of biological processes. An enhanced mathematical understanding of these solutions and models is gained via the identification of canards (special solutions of fast/slow dynamical systems) and their role in the existence of the most biologically relevant, shock-like solutions. The analysis focuses on two existing models. A new proof of existence of a whole family of travelling waves is provided for a model describing malignant tumour invasion, while new solutions are identified for a model describing wound healing angiogenesis.
Resumo:
Two ultrasound survey methods were used to determine the presence and activity patterns of New Zealand long-tailed bats (Chalinolobus tuberculatus) in the city of Hamilton. First, 13 monthly surveys conducted at 18 green spaces found C. tuberculatus in only one urban forest reserve, Hammond Bush, where they were found consistently throughout the year. Bat activity was strongly related to temperature. Second, twice-yearly citywide surveys conducted over 2 years determined the distribution and habitat associations of C. tuberculatus. Bats were found only in the southern part of the city and were strongly associated with the Waikato River. Bat activity was negatively correlated with housing and street light density and positively correlated with topographical complexity. In Hamilton, topographical complexity indicates the presence of gullies. Gullies probably provide foraging and roosting opportunities and connect the river to distant forest patches. These results suggest that urban habitats can be useful for bats if gullies can link these to distant habitat fragments.
Resumo:
The foraging behavior of greater short-nosed fruit bats (Cynopterus sphinx) on wild banana (Musa acuminata) and subsequent dispersal of seeds were studied in the Tropical Rainforest Conservation Area, Xishuangbanna Tropical Botanical Garden, Yunnan province, by direct observation of marked fruits, mist netting, and seed collection. The mean number (± SE) of individual C. sphinx captured by mist net were 2.2 ± 0.33/day and 1.4 ± 0.32/day in the rainy season (September to October) and dry season (November to December), respectively; the difference was not significant. The number of seed pellets expelled was 9.0 ± 1.12/day and 7.2 ± 1.37/day in the rainy and dry seasons respectively; again the difference was not significant. The removal curves for marked fruit were similar for 10 focal trees. Fruits were consumed heavily within two weeks after ripening and all the marked fruit were removed within one month. The difference in seed dispersal was significant between different feeding roosts indicating that patterns of seed dispersal may not be uniform. We found the seeds of M. acuminata can be dispersed by C. sphinx to a distance of about 200 m, and C. sphinx can be considered as an effective seed disperser of M. acuminata.
Resumo:
Yield in cultivated cotton (Gossypium spp.) is affected by the number and distribution of fibres initiated on the seed surface but, apart from simple statistical summaries, little has been done to assess this phenotype quantitatively. Here we use two types of spatial statistics to describe and quantify differences in patterning of cotton ovule fibre initials (FI). The following five different species of Gossypium were analysed: G. hirsutum L., G. barbadense L., G. arboreum, G. raimondii Ulbrich. and G. trilobum (DC.) Skovsted. Scanning electron micrographs of FIs were taken on the day of anthesis. Cell centres for fibre and epidermal cells were digitised and analysed by spatial statistics methods appropriate for marked point processes and tessellations. Results were consistent with previously published reports of fibre number and spacing. However, it was shown that the spatial distributions of FIs in all of species examined exhibit regularity, and are not completely random as previously implied. The regular arrangement indicates FIs do not appear independently of each other and we surmise there may be some form of mutual inhibition specifying fibre-initial development. It is concluded that genetic control of FIs differs from that of stomata, another well studied plant idioblast. Since spatial statistics show clear species differences in the distribution of FIs within this genus, they provide a useful method for phenotyping cotton. © CSIRO 2007.
Resumo:
It is well understood that that there is variation inherent in all testing techniques, and that all soil and rock materials also contain some degree of natural variability. Less consideration is normally given to variation associated with natural material heterogeneity within a site, or the relative condition of the material at the time of testing. This paper assesses the impact of spatial and temporal variability upon repeated insitu testing of a residual soil and rock profile present within a single residential site over a full calendar year, and thus range of seasonal conditions. From this repeated testing, the magnitude of spatial and temporal variation due to seasonal conditions has demonstrated that, depending on the selected location and moisture content of the subsurface at the time of testing, up to a 35% variation within the test results can be expected. The results have also demonstrated that the completed insitu test technique has a similarly large measurement and inherent variability error and, for the investigated site, up to a 60% variation in normalised results was observed. From these results, it is recommended that the frequency and timing of insitu tests should be considered when deriving geotechnical design parameters from a limited data set.