469 resultados para Model information
Resumo:
Spatial data analysis has become more and more important in the studies of ecology and economics during the last decade. One focus of spatial data analysis is how to select predictors, variance functions and correlation functions. However, in general, the true covariance function is unknown and the working covariance structure is often misspecified. In this paper, our target is to find a good strategy to identify the best model from the candidate set using model selection criteria. This paper is to evaluate the ability of some information criteria (corrected Akaike information criterion, Bayesian information criterion (BIC) and residual information criterion (RIC)) for choosing the optimal model when the working correlation function, the working variance function and the working mean function are correct or misspecified. Simulations are carried out for small to moderate sample sizes. Four candidate covariance functions (exponential, Gaussian, Matern and rational quadratic) are used in simulation studies. With the summary in simulation results, we find that the misspecified working correlation structure can still capture some spatial correlation information in model fitting. When the sample size is large enough, BIC and RIC perform well even if the the working covariance is misspecified. Moreover, the performance of these information criteria is related to the average level of model fitting which can be indicated by the average adjusted R square ( [GRAPHICS] ), and overall RIC performs well.
Resumo:
Due to the increasing speed of landscape changes and the massive development of computer technologies, the methods of representing heritage landscapes using digital tools have become a worldwide concern in conservation research. The aim of this paper is to demonstrate how an ‘interpretative model’ can be used for contextual design of heritage landscape information systems. This approach is explored through building a geographic information system database for St Helena Island national park in Moreton Bay, South East Queensland, Australia. Stakeholders' interpretations of this landscape were collected through interviews, and then used as a framework for designing the database. The designed database is a digital inventory providing contextual descriptions of the historic infrastructure remnants on St Helena Island. It also reveals the priorities of different sites in terms of historic research, landscape restoration, and tourism development. Additionally, this database produces thematic maps of the intangible heritage values, which could be used for landscape interpretation. This approach is different from the existing methods because building a heritage information system is deemed as an interpretative activity, rather than a value-free replication of the physical environment. This approach also shows how a cultural landscape methodology can be used to create a flexible information system for heritage conservation. The conclusion is that an ‘interpretative model’ of database design facilitates a more explicit focus on information support, and is a potentially effective approach to user-centred design of geographic information systems.
Resumo:
Species distribution modelling (SDM) typically analyses species’ presence together with some form of absence information. Ideally absences comprise observations or are inferred from comprehensive sampling. When such information is not available, then pseudo-absences are often generated from the background locations within the study region of interest containing the presences, or else absence is implied through the comparison of presences to the whole study region, e.g. as is the case in Maximum Entropy (MaxEnt) or Poisson point process modelling. However, the choice of which absence information to include can be both challenging and highly influential on SDM predictions (e.g. Oksanen and Minchin, 2002). In practice, the use of pseudo- or implied absences often leads to an imbalance where absences far outnumber presences. This leaves analysis highly susceptible to ‘naughty-noughts’: absences that occur beyond the envelope of the species, which can exert strong influence on the model and its predictions (Austin and Meyers, 1996). Also known as ‘excess zeros’, naughty noughts can be estimated via an overall proportion in simple hurdle or mixture models (Martin et al., 2005). However, absences, especially those that occur beyond the species envelope, can often be more diverse than presences. Here we consider an extension to excess zero models. The two-staged approach first exploits the compartmentalisation provided by classification trees (CTs) (as in O’Leary, 2008) to identify multiple sources of naughty noughts and simultaneously delineate several species envelopes. Then SDMs can be fit separately within each envelope, and for this stage, we examine both CTs (as in Falk et al., 2014) and the popular MaxEnt (Elith et al., 2006). We introduce a wider range of model performance measures to improve treatment of naughty noughts in SDM. We retain an overall measure of model performance, the area under the curve (AUC) of the Receiver-Operating Curve (ROC), but focus on its constituent measures of false negative rate (FNR) and false positive rate (FPR), and how these relate to the threshold in the predicted probability of presence that delimits predicted presence from absence. We also propose error rates more relevant to users of predictions: false omission rate (FOR), the chance that a predicted absence corresponds to (and hence wastes) an observed presence, and the false discovery rate (FDR), reflecting those predicted (or potential) presences that correspond to absence. A high FDR may be desirable since it could help target future search efforts, whereas zero or low FOR is desirable since it indicates none of the (often valuable) presences have been ignored in the SDM. For illustration, we chose Bradypus variegatus, a species that has previously been published as an exemplar species for MaxEnt, proposed by Phillips et al. (2006). We used CTs to increasingly refine the species envelope, starting with the whole study region (E0), eliminating more and more potential naughty noughts (E1–E3). When combined with an SDM fit within the species envelope, the best CT SDM had similar AUC and FPR to the best MaxEnt SDM, but otherwise performed better. The FNR and FOR were greatly reduced, suggesting that CTs handle absences better. Interestingly, MaxEnt predictions showed low discriminatory performance, with the most common predicted probability of presence being in the same range (0.00-0.20) for both true absences and presences. In summary, this example shows that SDMs can be improved by introducing an initial hurdle to identify naughty noughts and partition the envelope before applying SDMs. This improvement was barely detectable via AUC and FPR yet visible in FOR, FNR, and the comparison of predicted probability of presence distribution for pres/absence.
Resumo:
Recent advances in neural language models have contributed new methods for learning distributed vector representations of words (also called word embeddings). Two such methods are the continuous bag-of-words model and the skipgram model. These methods have been shown to produce embeddings that capture higher order relationships between words that are highly effective in natural language processing tasks involving the use of word similarity and word analogy. Despite these promising results, there has been little analysis of the use of these word embeddings for retrieval. Motivated by these observations, in this paper, we set out to determine how these word embeddings can be used within a retrieval model and what the benefit might be. To this aim, we use neural word embeddings within the well known translation language model for information retrieval. This language model captures implicit semantic relations between the words in queries and those in relevant documents, thus producing more accurate estimations of document relevance. The word embeddings used to estimate neural language models produce translations that differ from previous translation language model approaches; differences that deliver improvements in retrieval effectiveness. The models are robust to choices made in building word embeddings and, even more so, our results show that embeddings do not even need to be produced from the same corpus being used for retrieval.
Resumo:
- BACKGROUND Access to information on the features and outcomes associated with the various models of maternity care available in Australia is vital for women's informed decision-making. This study sought to identify women's preferences for information access and decision-making involvement, as well as their priority information needs, for model of care decision-making. - METHODS A convenience sample of adult women of childbearing age in Queensland, Australia were recruited to complete an online survey assessing their model of care decision support needs. Knowledge on models of care and socio-demographic characteristics were also assessed. - RESULTS Altogether, 641 women provided usable survey data. Of these women, 26.7 percent had heard of all available models of care before starting the survey. Most women wanted access to information on models of care (90.4%) and an active role in decision-making (99.0%). Nine priority information needs were identified: cost, access to choice of mode of birth and care provider, after hours provider contact, continuity of carer in labor/birth, mobility during labor, discussion of the pros/cons of medical procedures, rates of skin-to-skin contact after birth, and availability at a preferred birth location. This information encompassed the priority needs of women across age, birth history, and insurance status subgroups. - CONCLUSIONS This study demonstrates Australian women's unmet needs for information that supports them to effectively compare available options for model of maternity care. Findings provide clear direction on what information should be prioritized and ideal channels for information access to support quality decision-making in practice.
Resumo:
The aim of this research was to identify the role of brand reputation in encouraging consumer willingness to provide personal data online, for the benefits of personalisation. This study extends on Malhotra, Kim and Agarwal’s (2004) Internet Users Information Privacy Concerns Model, and uses the theoretical underpinning of Social Contract Theory to assess how brand reputation moderates the relationship between trusting beliefs and perceived value (Privacy Calculus framework) with willingness to give personal information. The research is highly relevant as most privacy research undertaken to date focuses on consumer related concerns. Very little research exists examining the role of brand reputation and online privacy. Practical implications of this research include gaining knowledge as to how to minimise online privacy concerns; improve brand reputation; and provide insight on how to reduce consumer resistance to the collection of personal information and encourage consumer opt-in.
Resumo:
We carried out a discriminant analysis with identity by descent (IBD) at each marker as inputs, and the sib pair type (affected-affected versus affected-unaffected) as the output. Using simple logistic regression for this discriminant analysis, we illustrate the importance of comparing models with different number of parameters. Such model comparisons are best carried out using either the Akaike information criterion (AIC) or the Bayesian information criterion (BIC). When AIC (or BIC) stepwise variable selection was applied to the German Asthma data set, a group of markers were selected which provide the best fit to the data (assuming an additive effect). Interestingly, these 25-26 markers were not identical to those with the highest (in magnitude) single-locus lod scores.
Resumo:
Information sharing in distance collaboration: A software engineering perspective, QueenslandFactors in software engineering workgroups such as geographical dispersion and background discipline can be conceptually characterized as "distances", and they are obstructive to team collaboration and information sharing. This thesis focuses on information sharing across multidimensional distances and develops an information sharing distance model, with six core dimensions: geography, time zone, organization, multi-discipline, heterogeneous roles, and varying project tenure. The research suggests that the effectiveness of workgroups may be improved through mindful conducts of information sharing, especially proactive consideration of, and explicit adjustment for, the distances of the recipient when sharing information.
Resumo:
This paper provides a first look at the acceptance of Accountable-eHealth (AeH) systems–a new genre of eHealth systems designed to manage information privacy concerns that hinder the proliferation of eHealth. The underlying concept of AeH systems is appropriate use of information through after-the-fact accountability for intentional misuse of information by healthcare professionals. An online questionnaire survey was utilised for data collection from three educational institutions in Queensland, Australia. A total of 23 hypotheses relating to 9 constructs were tested using a structural equation modelling technique. The moderation effects on the hypotheses were also tested based on six moderation factors to understand their role on the designed research model. A total of 334 valid responses were received. The cohort consisted of medical, nursing and other health related students studying at various levels in both undergraduate and postgraduate courses. Hypothesis testing provided sufficient data to accept 7 hypotheses. The empirical research model developed was capable of predicting 47.3% of healthcare professionals’ perceived intention to use AeH systems. All six moderation factors showed significant influence on the research model. A validation of this model with a wider survey cohort is recommended as a future study.
Resumo:
Disease maps are effective tools for explaining and predicting patterns of disease outcomes across geographical space, identifying areas of potentially elevated risk, and formulating and validating aetiological hypotheses for a disease. Bayesian models have become a standard approach to disease mapping in recent decades. This article aims to provide a basic understanding of the key concepts involved in Bayesian disease mapping methods for areal data. It is anticipated that this will help in interpretation of published maps, and provide a useful starting point for anyone interested in running disease mapping methods for areal data. The article provides detailed motivation and descriptions on disease mapping methods by explaining the concepts, defining the technical terms, and illustrating the utility of disease mapping for epidemiological research by demonstrating various ways of visualising model outputs using a case study. The target audience includes spatial scientists in health and other fields, policy or decision makers, health geographers, spatial analysts, public health professionals, and epidemiologists.
Resumo:
The concession agreement is the core feature of BOT projects, with the concession period being the most essential feature in determining the time span of the various rights, obligations and responsibilities of the government and concessionaire. Concession period design is therefore crucial for financial viability and determining the benefit/cost allocation between the host government and the concessionaire. However, while the concession period and project life span are essentially interdependent, most methods to date consider their determination as contiguous events that are determined exogenously. Moreover, these methods seldom consider the, often uncertain, social benefits and costs involved that are critical in defining, pricing and distributing benefits and costs between the various parties and evaluating potentially distributable cash flows. In this paper, we present the results of the first stage of a research project aimed at determining the optimal build-operate-transfer (BOT) project life span and concession period endogenously and interdependently by maximizing the combined benefits of stakeholders. Based on the estimation of the economic and social development involved, a negotiation space of the concession period interval is obtained, with its lower boundary creating the desired financial return for the private investors and its upper boundary ensuring the economic feasibility of the host government as well as the maximized welfare within the project life. The outcome of the new quantitative model is considered as a suitable basis for future field trials prior to implementation. The structure and details of the model are provided in the paper with Hong Kong tunnel project as a case study to demonstrate its detailed application. The basic contributions of the paper to the theory of construction procurement are that the project life span and concession period are determined jointly and the social benefits taken into account in the examination of project financial benefits. In practical terms, the model goes beyond the current practice of linear-process thinking and should enable engineering consultants to provide project information more rationally and accurately to BOT project bidders and increase the government's prospects of successfully entering into a contract with a concessionaire. This is expected to generate more negotiation space for the government and concessionaire in determining the major socioeconomic features of individual BOT contracts when negotiating the concession period. As a result, the use of the model should increase the total benefit to both parties.
Resumo:
In this research we modelled computer network devices to ensure their communication behaviours meet various network standards. By modelling devices as finite-state machines and examining their properties in a range of configurations, we discovered a flaw in a common network protocol and produced a technique to improve organisations' network security against data theft.
Resumo:
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein−protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson−Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos−c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos−c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.
Resumo:
Health challenges present arguably the most significant barrier to sustainable global development. The introduction of ICT in healthcare, especially the application of mobile communications, has created the potential to transform healthcare delivery by making it more accessible, affordable and effective across the developing world. However, current research into the assessment of mHealth from the perspective of developing countries particularly with community Health workers (CHWs) as primary users continues to be limited. The aim of this study is to analyze the contribution of mHealth in enhancing the performance of the health workers and its alignment with existing workflows to guide its utilization. The proposed research takes into account this consideration and aims to examine the task-technology alignment of mHealth for CHWs drawing upon the task technology fit as the theoretical foundation.
Resumo:
Background Poor clinical handover has been associated with inaccurate clinical assessment and diagnosis, delays in diagnosis and test ordering, medication errors and decreased patient satisfaction in the acute care setting. Research on the handover process in the residential aged care sector is very limited. Purpose The aims of this study were to: (i) Develop an in-depth understanding of the handover process in aged care by mapping all the key activities and their information dynamics, (ii) Identify gaps in information exchange in the handover process and analyze implications for resident safety, (iii) Develop practical recommendations on how information communication technology (ICT) can improve the process and resident safety. Methods The study was undertaken at a large metropolitan facility in NSW with more than 300 residents and a staff including 55 registered nurses (RNs) and 146 assistants in nursing (AINs). A total of 3 focus groups, 12 interviews and 3 observation sessions were conducted over a period from July to October 2010. Process mapping was undertaken by translating the qualitative data via a five-category code book that was developed prior to the analysis. Results Three major sub-processes were identified and mapped. The three major stages are Handover process (HOP) I “Information gathering by RN”, HOP II “Preparation of preliminary handover sheet” and HOP III “Execution of handover meeting”. Inefficient processes were identified in relation to the handover including duplication of information, utilization of multiple communication modes and information sources, and lack of standardization. Conclusion By providing a robust process model of handover this study has made two critical contributions to research in aged care: (i) a means to identify important, possibly suboptimal practices; and (ii) valuable evidence to plan and improve ICT implementation in residential aged care. The mapping of this process enabled analysis of gaps in information flow and potential impacts on resident safety. In addition it offers the basis for further studies into a process that, despite its importance for securing resident safety and continuity of care, lacks research.