501 resultados para Coastal engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problem solving is an essential element of civil engineering education. It has been observed that students are best able to understand civil engineering theory when there is a practical application of it. Teaching theory alone has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure and “drop-out”. This paper analyses the effectiveness of introducing practical design projects at an early stage within a civil engineering undergraduate program at Queensland University of Technology. In two of the essential basic subjects, Engineering Mechanics and Steel Structures, model projects which simulate realistic engineering exercises were introduced. Students were required to work in small groups to analyse, design and build the lightest / most efficient model bridges made of specific materials such as spaghetti, drinking straw, paddle pop sticks and balsa wood and steel columns for a given design loading/target capacity. The paper traces the success of the teaching strategy at each stage from its introduction through to the final student and staff evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Engineering is a problem-based practically oriented discipline, whose practitioners aim to find effective solutions to engineering challenges, technically and economically. Engineering educators operate within a mandate to ensure that graduate engineers understand the practicalities and realities of good engineering practice. While this is a vital goal for the discipline, emerging influences are challenging the focus on ‘hard practicalities’ and requiring recognition of the cultural and social aspects of engineering. Expecting graduate engineers to possess communication skills essential for negotiating satisfactory outcomes in contexts of complex social beliefs about the impact of their work can be an unsettling and challenging prospect for engineering educators. This project identifies and addresses Indigenous engineering practices and principles, and their relevance to future engineering practices. PURPOSE This Office of Learning and Teaching (OLT) project proposes that what is known/discoverable about indigenous engineering knowledge and practices must be integrated into engineering curricula. This is an important aspect of ensuring that engineering as a profession responds competently to increasing demands for socially and environmentally responsible activity across all aspects of engineering activity. DESIGN/METHOD The project addresses i) means for appropriate inclusion of Indigenous students into usual teaching activities ii) assuring engineering educators have access to knowledge of Indigenous practices and skills relevant to particular engineering courses and topics iii) means for preparing all students to negotiate their way through issues of indigenous relationships with the land where engineering projects are planned. The project is undertaking wide-ranging research to collate knowledge about indigenous engineering principles and practices and develop relevant resource materials. RESULTS It is common to hear that such social issues as ‘Indigenous concerns’ are only of concern to environmental engineers. We challenge that perspective, and make the case that Indigenous knowledge is an important issue for all engineering educators in relation to effective integration of indigenous students and preparation of all engineering graduates to engage with indigenous communities. At the time of first contact, a rich and varied, technically literate, Indigenous social framework possessed knowledge of the environment that is not yet fully acknowledged in Australian society. A core outcome of the work will be development of resources relating to Indigenous engineering practices for inclusion in engineering core curricula. CONCLUSIONS A large body of technical knowledge was needed to survive and sustain human society in the complex environment that was Australia before 1788. This project is developing resource materials, and supporting documentation, about that knowledge to enable engineering educators to more easily integrate it into current curricula. The project also aims to demonstrate the importance for graduating engineers to appreciate the existence of diverse perspectives on engineering tasks and learn how to value - and employ - multiple paths to possible solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct writing melt electrospinning is an additive manufacturing technique capable of the layer-by-layer fabrication of highly ordered 3d tissue engineering scaffolds from micron-diameter fibres. The utility of these scaffolds, however, is limited by the maximum achievable height of controlled fibre deposition, beyond which the structure becomes increasingly disordered. A source of this disorder is charge build-up on the deposited polymer producing unwanted coulombic forces. In this study we introduce a novel melt electrospinning platform with dual voltage power supplies to reduce undesirable charge effects and improve fibre deposition control. We produced and characterised several 90° cross-hatched fibre scaffolds using a range of needle/collector plate voltages. Fibre thickness was found to be sensitive only to overall potential and invariant to specific tip/collector voltage. We also produced ordered scaffolds up to 200 layers thick (fibre spacing 1 mm, diameter 40 μm) and characterised structure in terms of three distinct zones; ordered, semi-ordered and disordered. Our in vitro analysis indicates successful cell attachment and distribution throughout the scaffolds, with little evidence of cell death after seven days. This study demonstrates the importance of electrostatic control for reducing destabilising polymer charge effects and enabling the fabrication of morphologically suitable scaffolds for tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microalgae biotechnology has recently emerged into the lime light owing to numerous consumer products that can be harnessed from microalgae. Product portfolio stretches from straightforward biomass production for food and animal feed to valuable products extracted from microalgal biomass, including triglycerides which can be converted into biodiesel. For most of these applications, the production process is moderately economically viable and the market is developing. Considering the enormous biodiversity of microalgae and recent developments in genetic and metabolic engineering, this group of organisms represents one of the most promising sources for new products and applications. With the development of detailed culture and screening techniques, microalgal biotechnology can meet the high demands of food, energy and pharmaceutical industries. This review article discusses the technology and production platforms for development and creation of different valuable consumer products from microalgal biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent of exothermicity associated with the construction of large-volume methacrylate monolithic columns has somewhat obstructed the realisation of large-scale rapid biomolecule purification especially for plasmid-based products which have proven to herald future trends in biotechnology. A novel synthesis technique via a heat expulsion mechanism was employed to prepare a 40 mL methacrylate monolith with a homogeneous radial pore structure along its thickness. Radial temperature gradient was recorded to be only 1.8 °C. Maximum radial temperature recorded at the centre of the monolith was 62.3 °C, which was only 2.3 °C higher than the actual polymerisation temperature. Pore characterisation of the monolithic polymer showed unimodal pore size distributions at different radial positions with an identical modal pore size of 400 nm. Chromatographic characterisation of the polymer after functionalisation with amino groups displayed a persistent dynamic binding capacity of 15.5 mg of plasmid DNA/mL. The maximum pressure drop recorded was only 0.12 MPa at a flow rate of 10 mL/min. The polymer demonstrated rapid separation ability by fractionating Escherichia coli DH5α-pUC19 clarified lysate in only 3 min after loading. The plasmid sample collected after the fast purification process was tested to be a homogeneous supercoiled plasmid with DNA electrophoresis and restriction analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infectious diseases such as SARS, influenza and bird flu have the potential to cause global pandemics; a key intervention will be vaccination. Hence, it is imperative to have in place the capacity to create vaccines against new diseases in the shortest time possible. In 2004, The Institute of Medicine asserted that the world is tottering on the verge of a colossal influenza outbreak. The institute stated that, inadequate production system for influenza vaccines is a major obstruction in the preparation towards influenza outbreaks. Because of production issues, the vaccine industry is facing financial and technological bottlenecks: In October 2004, the FDA was caught off guard by the shortage of flu vaccine, caused by a contamination in a US-based plant (Chiron Corporation), one of the only two suppliers of US flu vaccine. Due to difficulties in production and long processing times, the bulk of the world's vaccine production comes from very small number of companies compared to the number of companies producing drugs. Conventional vaccines are made of attenuated or modified forms of viruses. Relatively high and continuous doses are administered when a non-viable vaccine is used and the overall protective immunity obtained is ephemeral. The safety concerns of viral vaccines have propelled interest in creating a viable replacement that would be more effective and safer to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal resources are coming under increasing pressure from competition between recreational, commercial and conservation uses. This is particularly so in coastal areas adjacent to major population centres. Given high recreational and conservation values in such areas, economic activities need to be highly efficient in order to persist. Management of these industries must therefore also encourage efficient production and full utilisation of the areas available. In order to achieve this, managers must first understand the level and drivers of productivity, and how these can be influenced. In this study, by way of illustration, the focus was on the Sydney rock oyster industry within Queensland's Moreton Bay, a multiple use marine park with high recreational and conservation value adjacent to Australia's third largest city. Productivity of the oyster industry in Moreton Bay is currently low compared to historic levels, and management has an objective of reversing this trend. It is unclear whether this difference is due to oyster farmers' business choices and personal characteristics or whether varying environmental conditions in the Moreton Bay limit the capacity of the oyster industry. These require different management responses in order to enhance productivity. The study examined different productivity measures of the oyster industry using data envelopment analysis (DEA) to determine where productivity gains can be made and by how much. The findings suggest that the industry is operating at a high level of capacity utilisation, but a low level of efficiency. The results also suggest that both demographic and environmental conditions affect technical efficiency in the Bay, with water characteristics improvements and appropriate training potentially providing the greatest benefits to the industry. Methods used in this study are transferable to other industries and provide a means by which coastal aquaculture may be managed to ensure it remains competitive with other uses of coastal resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction of large?volume methacrylate monolithic columns for preparative-scale plasmid purification is obstructed by the enormous release of exotherms, thus introducing structural heterogeneity in the monolith pore system. A remarkable radial temperature gradient develops along the monolith thickness, reaching a terminal temperature that supersedes the maximum temperature required for the preparation of a structurally homogeneous monolith. A novel heat expulsion technique is employed to overcome the heat build-up during the synthesis process. The enormous heat build-up is perceived to encompass the heat associated with initiator decomposition and the heat released from free radical-monomer and monomer-monomer interactions. The heat resulting from the initiator decomposition was expelled along with some gaseous fumes before commencing polymerisation in a gradual addition fashion. Characteristics of a 50 mL monolith synthesized using this technique showed an improved uniformity in the pore structure radially along the length on the monolith. Chromatographic characterization of this adsorbent displayed a persistent binding capacity of 14.5 mg pDNA/mL of the adsorbent. The adsorbent was able to fractionate a clarified bacteria lysate in only 3 min (after loading) into RNA, protein and pDNA respectively. The pDNA fraction obtained was analyzed to be a homogeneous supercoiled pDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision-based underwater navigation and obstacle avoidance demands robust computer vision algorithms, particularly for operation in turbid water with reduced visibility. This paper describes a novel method for the simultaneous underwater image quality assessment, visibility enhancement and disparity computation to increase stereo range resolution under dynamic, natural lighting and turbid conditions. The technique estimates the visibility properties from a sparse 3D map of the original degraded image using a physical underwater light attenuation model. Firstly, an iterated distance-adaptive image contrast enhancement enables a dense disparity computation and visibility estimation. Secondly, using a light attenuation model for ocean water, a color corrected stereo underwater image is obtained along with a visibility distance estimate. Experimental results in shallow, naturally lit, high-turbidity coastal environments show the proposed technique improves range estimation over the original images as well as image quality and color for habitat classification. Furthermore, the recursiveness and robustness of the technique allows implementation onboard an Autonomous Underwater Vehicle for improving navigation and obstacle avoidance performance.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoarthritis is the most common cause of pain and disability in Australia. This project describes a method where hundreds of cartilage microtissues are generated as tiny building blocks for assembly into larger tissues suitable for cartilage defect repair. Tissue engineering applications has the potential to overcome natural barriers and effectively repair damaged cartilage tissue. However, engineering few-millimeter thick cartilage, similar to human cartilage in the knee, remains a challenge. Utilizing micropellets as building blocks has the potential to overcome some of the challenges in cartilage tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunable charge-trapping behaviors including unipolar charge trapping of one type of charge carrier and ambipolar trapping of both electrons and holes in a complementary manner is highly desirable for low power consumption multibit flash memory design. Here, we adopt a strategy of tuning the Fermi level of reduced graphene oxide (rGO) through self-assembled monolayer (SAM) functionalization and form p-type and n-type doped rGO with a wide range of manipulation on work function. The functionalized rGO can act as charge-trapping layer in ambipolar flash memories, and a dramatic transition of charging behavior from unipolar trapping of electrons to ambipolar trapping and eventually to unipolar trapping of holes was achieved. Adjustable hole/electron injection barriers induce controllable Vth shift in the memory transistor after programming operation. Finally, we transfer the ambipolar memory on flexible substrates and study their charge-trapping properties at various bending cycles. The SAM-functionalized rGO can be a promising candidate for next-generation nonvolatile memories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage is a highly organized tissue with cellular and matrix properties that vary with depth zones. Regenerating this zonal organization has proven difficult in tissue-engineered cartilage to treat damaged cartilage. In this thesis, we evaluated the effects of culture environments that mimic aspects of the native cartilage environment on chondrocyte subpopulations. We found that decellularized cartilage matrix can improve zonal tissue-engineered cartilage. Also, chondrocytes respond to signals from bone cells and compressive stimulation in a zone-dependent manner. These results highlight the importance of a zone-specific environment to improve tissue-engineered cartilage in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Historically, science had a place in education before the time of Plato and Aristotle (e.g., Stonehenge). Technology gradually increased since early human inventions (e.g., indigenous tools and weapons), rose up dramatically through the industrial revolution and escalated exponentially during the twentieth and twenty-first centuries, particularly with the advent of the Internet. Engineering accomplishments were evident in the constructs of early civil works, including roads and structural feats such as the Egyptian pyramids. Mathematics was not as clearly defined BC (Seeds 2010), but was utilized for more than two millennia (e.g., Archimedes, Kepler, and Newton) and paved its way into education as an essential scientific tool and a way of discovering new possibilities. Hence, combining science, technology, engineering, and mathematics (STEM) areas should not come as a surprise but rather as a unique way of packaging what has been ..."--Publisher Website