456 resultados para Bone biology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a key component of the ocular surface required for vision, the cornea has been extensively studied as a site for cell and tissue-based therapies. Historically, these treatments have consisted of donor corneal tissue transplants, but cultivated epithelial autografts have become established over the last 15 years as a routine treatment for ocular surface disease. Ultimately, these treatments are performed with the intention of restoring corneal transparency and a smooth ocular surface. The degree of success, however, is often dependent upon the inherent level of corneal inflammation at time of treatment. In this regard, the anti-inflammatory and immuno-modulatory properties of mesenchymal stromal cells (MSC) have drawn attention to these cells as potential therapeutic agents for corneal repair. The origins for MSC-based therapies are founded in part on observations of the recruitment of endogenous bone marrow-derived cells to injured corneas, however, an increasing quantity of data is emerging for MSC administered following their isolation and ex vivo expansion from a variety of tissues including bone marrow, adipose tissue, umbilical cord and dental pulp. In brief, evidence has emerged of cultured MSC, or their secreted products, having a positive impact on corneal wound healing and retention of corneal allografts in animal models. Optimal dosage, route of administration and timing of treatment, however, all remain active areas of investigation. Intriguingly, amidst these studies, have emerged reports of MSC transdifferentiation into corneal cells. Clearest evidence has been obtained with respect to expression of markers associated with the phenotype of corneal stromal cells. In contrast, the evidence for MSC conversion to corneal epithelial cell types remains inconclusive. In any case, the conversion of MSC into corneal cells seems unlikely to be an essential requirement for their clinical use. This field of research has recently become more complicated by reports of MSC-like properties for cultures established from the peripheral corneal stroma (limbal stroma). The relationship and relative value of corneal-MSC compared to traditional sources of MSC such as bone marrow are at present unclear. This chapter is divided into four main parts. After providing a concise overview of corneal structure and function, we will highlight the types of corneal diseases that are likely to benefit from the anti-inflammatory and immuno-modulatory properties of MSC. We will subsequently summarize the evidence supporting the case for MSC-based therapies in the treatment of corneal diseases. In the third section we will review the literature concerning the keratogenic potential of MSC. Finally, we will review the more recent literature indicating the presence of MSC-like cells derived from corneal tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct bone marrow (BM) injection has been proposed as a strategy to bypass homing inefficiencies associated with intravenous (IV) hematopoietic stem cell (HSC) transplantation. Despite physical delivery into the BM cavity, many donor cells are rapidly redistributed by vascular perfusion, perhaps compromising efficacy. Anchoring donor cells to 3-dimensional (3D) multicellular spheroids, formed from mesenchymal stem/stromal cells (MSC) might improve direct BM transplantation. To test this hypothesis, relevant combinations of human umbilical cord blood-derived CD34(+) cells and BM-derived MSC were transplanted into NOD/SCID gamma (NSG) mice using either IV or intrafemoral (IF) routes. IF transplantation resulted in higher human CD45(+) and CD34(+) cell engraftment within injected femurs relative to distal femurs regardless of cell combination, but did not improve overall CD45(+) engraftment at 8 weeks. Analysis within individual mice revealed that despite engraftment reaching near saturation within the injected femur, engraftment at distal hematopoietic sites including peripheral blood, spleen and non-injected femur, could be poor. Our data suggest that the retention of human HSC within the BM following direct BM injection enhances local chimerism at the expense of systemic chimerism in this xenogeneic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic inflammation is now recognized as a major cause of malignant disease. In concert with various mechanisms (including DNA instability), hypoxia and activation of inflammatory bioactive lipid pathways and pro-inflammatory cytokines open the doorway to malignant transformation and proliferation, angiogenesis, and metastasis in many cancers. A balance between stimulatory and inhibitory signals regulates the immune response to cancer. These include inhibitory checkpoints that modulate the extent and duration of the immune response and may be activated by tumor cells. This contributes to immune resistance, especially against tumor antigen-specific T-cells. Targeting these checkpoints is an evolving approach to cancer immunotherapy, designed to foster an immune response. The current focus of these trials is on the programmed cell death protein 1 (PD-1) receptor and its ligands (PD-L1, PD-L2) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Researchers have developed anti-PD-1 and anti-PDL-1 antibodies that interfere with the ligands and receptor and allow the tumor cell to be recognized and attacked by tumor-infiltrating T-cells. These are currently being studied in lung cancer. Likewise, CTLA-4 inhibitors, which have had success treating advanced melanoma, are being studied in lung cancer with encouraging results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cat’s claw creeper, Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry) is a major environmental weed in Australia. Two forms (‘long’ and ‘short’ pod) of the weed occur in Australia. This investigation aimed to evaluate and compare germination behavior and occurrence of polyembryony in the two forms of the weed. Seeds were germinated in growth chambers set to 10/20 °C, 15/25 °C, 20/30 °C, 30/45 °C and 25 °C. Germination and polyembryony were monitored over a period of 12 weeks. For all the treatments in this study, seeds from the short pod form exhibited significantly higher germination rates and higher occurrence of polyembryony than those from the long pod form. Seeds from the long pod form did not germinate at the lowest temperature of 10/20 °C; in contrast, those of the short pod form germinated under this condition, albeit at a lower rate. Results from this study could explain why the short pod form of D. unguis-cati is the more widely distributed form in Australia, while the long pod form is confined to a few localities. The results have implication in predicting future ranges of both forms of the invasive D. unguis-cati, as well as inform management decisions for control of the weed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to share the key elements of an evaluation framework to determine the true clinical outcomes of bone-anchored prostheses. Scientists, clinicians and policy makers are encouraged to implement their own evaluations relying on the proposed framework using a single database to facilitate reflective practice and, eventually, robust prospective studies.