564 resultados para 091399 Mechanical Engineering not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary drug delivery is the focus of much research and development because of its great potential to produce maximum therapeutic benefit. Among the available options the dry powder inhaler (DPI) is the preferred device for the treatment of an increasingly diverse number of diseases. However, as drug delivery from a DPI involves a complicated set of physical processes and the integration of drug formulations, device design and patient usage, the engineering development of this medical technology is proving to be a great challenge. Currently there is large range of devices that are either available on the market or under development, however, none exhibit superior clinical efficacy. A major concern is the inter- and intra-patient variability of the drug dosage delivered to the deep lungs. The extent of variability depends on the drug formulation, the device design and the patient’s inhalation profile. This article reviews recent advances in DPI technology and presents the key factors which motivate and constrain the successful engineering of a universal, patient-independent DPI that is capable of efficient, reliable and repeatable drug delivery. A strong emphasis is placed on the physical processes of drug powder aerosolisation, deagglomeration, and dispersion and on the engineering of formulations and inhalers that can optimise these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart antenna receiver and transmitter systems consist of multi-port arrays with an individual receiver channel (including ADC) and an individual transmitter channel (including DAC)at every of the M antenna ports, respectively. By means of digital beamforming, an unlimited number of simultaneous complex-valued vector radiation patterns with M-1 degrees of freedom can be formed. Applications of smart antennas in communication systems include space-division multiple access. If both stations of a communication link are equipped with smart antennas (multiple-input-multiple-output, MIMO). multiple independent channels can be formed in a "multi-path-rich" environment. In this article, it will be shown that under certain circumstances, the correlation between signals from adjacent ports of a dense array (M + ΔM elements) can be kept as low as the correlation between signals from adjacent ports of a conventional array (M elements and half-wavelength pacing). This attractive feature is attained by means of a novel approach which employs a RF decoupling network at the array ports in order to form new ports which are decoupled and associated with mutually orthogonal (de-correlated) radiation patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constant development of new wireless standards increases the demand for more radiating elements in compact end-user platforms. A decrease in antenna separation gives rise to increased antenna coupling, resulting in a reduction of the signal-to-interference-plus-noise-ratio (SINR) between transmitter and receiver. This paper proposes a decoupling network which provides dual band port isolation for a pair of distinct antennas. A prototype has been fabricated to verify the theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sub optimal resource allocation algorithm for Orthogonal Frequency Division Multiplexing (OFDM) based cooperative scheme is proposed. The system consists of multiple relays. Subcarrier space is divided into blocks and relays participating in cooperation are allocated specific blocks to be used with a user. To ensure unique subcarrier assignment system is constrained such that same block cannot be used by more than one user. Users are given fair block assignments while no restriction for maximum number of blocks a relay can employ is given. Forced cost based decisions [1] are used for block allocation. Simulation results show that this scheme outperforms a non cooperating scheme with sequential allocation with respect to power usage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilization of multiport-antennas represents an appropriate way for the mitigation of multi-path fading in wireless communication systems. However, to obtain low correlation between the signals from different antenna ports and to prevent gain reduction by cross-talk, large antenna elements spacing is expected. Polarization diversity allows signal separation even with small antenna spacing. Although it is effective, polarization diversity alone does not suffice once the number of antennas exceeds the number of orthogonal polarizations. This paper presents an approach which combines a novel array concept with the use of dual polarization. The theory is verified by a compact dual polarized patch antenna array, which consists of four elements and a decoupling network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a joint relay selection and subcarrier allocation problem that minimizes the total system power for a multi-user, multi-relay and single source cooperative OFDM based two hop system. The system is constrained to all users having a specific subcarrier requirement (user fairness). However no specific fairness constraints for relays are considered. To ensure the optimum power allocation, the subcarriers in two hops are paired with each other. We obtain an optimal subcarrier allocation for the single user case using a similar method to what is described in [1] and modify the algorithm for multiuser scenario. Although the optimality is not achieved in multiuser case the probability of all users being served fairly is improved significantly with a relatively low cost trade off.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract—In this paper we investigate the capacity of a general class of the slotted amplify and forward (SAF) relaying protocol where multiple, though a finite number of relays may transmit in a given cooperative slot and the relay terminals being half-duplex have a finite slot memory capacity. We derive an expression for the capacity per channel use of this generalized SAF channel assuming all source to relay, relay to destination and source to destination channel gains are independent and modeled as complex Gaussian. We show through the analysis of eigenvalue distributions that the increase in limiting capacity per channel use is marginal with the increase of relay terminals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of ex vivo blood production is limited by both biological and engineering challenges. From an engineering perspective, these challenges include the significant volumes required to generate even a single unit of a blood product, as well as the correspondingly high protein consumption required for such large volume cultures. Membrane bioreactors, such as hollow fiber bioreactors (HFBRs), enable cell densities approximately 100-fold greater than traditional culture systems and therefore may enable a significant reduction in culture working volumes. As cultured cells, and larger molecules, are retained within a fraction of the system volume, via a semipermeable membrane it may be possible to reduce protein consumption by limiting supplementation to only this fraction. Typically, HFBRs are complex perfusion systems having total volumes incompatible with bench scale screening and optimization of stem cell-based cultures. In this article we describe the use of a simplified HFBR system to assess the feasibility of this technology to produce blood products from umbilical cord blood-derived CD34+ hematopoietic stem progenitor cells (HSPCs). Unlike conventional HFBR systems used for protein manufacture, where cells are cultured in the extracapillary space, we have cultured cells in the intracapillary space, which is likely more compatible with the large-scale production of blood cell suspension cultures. Using this platform we direct HSPCs down the myeloid lineage, while targeting a 100-fold increase in cell density and the use of protein-free bulk medium. Our results demonstrate the potential of this system to deliver high cell densities, even in the absence of protein supplementation of the bulk medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New substation technology, such as non-conventional instrument transformers,and a need to reduce design and construction costs, are driving the adoption of Ethernet based digital process bus networks for high voltage substations. Protection and control applications can share a process bus, making more efficient use of the network infrastructure. This paper classifies and defines performance requirements for the protocols used in a process bus on the basis of application. These include GOOSE, SNMP and IEC 61850-9-2 sampled values. A method, based on the Multiple Spanning Tree Protocol (MSTP) and virtual local area networks, is presented that separates management and monitoring traffic from the rest of the process bus. A quantitative investigation of the interaction between various protocols used in a process bus is described. These tests also validate the effectiveness of the MSTP based traffic segregation method. While this paper focusses on a substation automation network, the results are applicable to other real-time industrial networks that implement multiple protocols. High volume sampled value data and time-critical circuit breaker tripping commands do not interact on a full duplex switched Ethernet network, even under very high network load conditions. This enables an efficient digital network to replace a large number of conventional analog connections between control rooms and high voltage switchyards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nerve tissue engineering requires suitable precursor cells as well as the necessary biochemical and physical cues to guide neurite extension and tissue development. An ideal scaffold for neural regeneration would be both fibrous and electrically conductive. We have contrasted the growth and neural differentiation of mouse embryonic stem cells on three different aligned nanofiber scaffolds composed of poly L: -lactic acid supplemented with either single- or multi-walled carbon-nanotubes. The addition of the nanotubes conferred conductivity to the nanofibers and promoted mESC neural differentiation as evidenced by an increased mature neuronal markers expression. We propose that the conductive scaffold could be a useful tool for the generation of neural tissue mimics in vitro and potentially as a scaffold for the repair of neural defects in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic stem cell (HSC) transplant is a well established curative therapy for some hematological malignancies. However, achieving adequate supply of HSC from some donor tissues can limit both its application and ultimate efficacy. The theory that this limitation could be overcome by expanding the HSC population before transplantation has motivated numerous laboratories to develop ex vivo expansion processes. Pioneering work in this field utilized stromal cells as support cells in cocultures with HSC to mimic the HSC niche. We hypothesized that through translation of this classic coculture system to a three-dimensional (3D) structure we could better replicate the niche environment and in turn enhance HSC expansion. Herein we describe a novel high-throughput 3D coculture system where murine-derived HSC can be cocultured with mesenchymal stem/stromal cells (MSC) in 3D microaggregates—which we term “micromarrows.” Micromarrows were formed using surface modified microwells and their ability to support HSC expansion was compared to classic two-dimensional (2D) cocultures. While both 2D and 3D systems provide only a modest total cell expansion in the minimally supplemented medium, the micromarrow system supported the expansion of approximately twice as many HSC candidates as the 2D controls. Histology revealed that at day 7, the majority of bound hematopoietic cells reside in the outer layers of the aggregate. Quantitative polymerase chain reaction demonstrates that MSC maintained in 3D aggregates express significantly higher levels of key hematopoietic niche factors relative to their 2D equivalents. Thus, we propose that the micromarrow platform represents a promising first step toward a high-throughput HSC 3D coculture system that may enable in vitro HSC niche recapitulation and subsequent extensive in vitro HSC self-renewal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficacy of existing articular cartilage defect repair strategies are limited. Native cartilage tissue forms via a series of exquisitely orchestrated morphogenic events spanning through gestation into early childhood. However, defect repair must be achieved in a non-ideal microenvironment over an accelerated time-frame compatible with the normal life of an adult patient. Scaffolds formed from decellularized tissues are commonly utilized to enable the rapid and accurate repair of tissues such as skin, bladder and heart valves. The intact extracellular matrix remaining following the decellularization of these relatively low-matrix-density tissues is able to rapidly and accurately guide host cell repopulation. By contrast, the extraordinary density of cartilage matrix limits both the initial decellularization of donor material as well as its subsequent repopulation. Repopulation of donor cartilage matrix is generally limited to the periphery, with repopulation of lacunae deeper within the matrix mass being highly inefficient. Herein, we review the relevant literature and discuss the trend toward the use of decellularized donor cartilage matrix of microscopic dimensions. We show that 2-µm microparticles of donor matrix are rapidly integrate with articular chondrocytes, forming a robust cartilage-like composites with enhanced chondrogenic gene expression. Strategies for the clinical application of donor matrix microparticles in cartilage defect repair are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced substation applications, such as synchrophasors and IEC 61850-9-2 sampled value process buses, depend upon highly accurate synchronizing signals for correct operation. The IEEE 1588 Precision Timing Protocol (PTP) is the recommended means of providing precise timing for future substations. This paper presents a quantitative assessment of PTP reliability using Fault Tree Analysis. Two network topologies are proposed that use grandmaster clocks with dual network connections and take advantage of the Best Master Clock Algorithm (BMCA) from IEEE 1588. The cross-connected grandmaster topology doubles reliability, and the addition of a shared third grandmaster gives a nine-fold improvement over duplicated grandmasters. The performance of BMCA mediated handover of the grandmaster role during contingencies in the timing system was evaluated experimentally. The 1 µs performance requirement of sampled values and synchrophasors are met, even during network or GPS antenna outages. Slave clocks are shown to synchronize to the backup grandmaster in response to degraded performance or loss of the main grandmaster. Slave disturbances are less than 350 ns provided the grandmaster reference clocks are not offset from one another. A clear understanding of PTP reliability and the factors that affect availability will encourage the adoption of PTP for substation time synchronization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IEEE Subcommittee on the Application of Probability Methods (APM) published the IEEE Reliability Test System (RTS) [1] in 1979. This system provides a consistent and generally acceptable set of data that can be used both in generation capacity and in composite system reliability evaluation [2,3]. The test system provides a basis for the comparison of results obtained by different people using different methods. Prior to its publication, there was no general agreement on either the system or the data that should be used to demonstrate or test various techniques developed to conduct reliability studies. Development of reliability assessment techniques and programs are very dependent on the intent behind the development as the experience of one power utility with their system may be quite different from that of another utility. The development and the utilization of a reliability program are, therefore, greatly influenced by the experience of a utlity and the intent of the system manager, planner and designer conducting the reliability studies. The IEEE-RTS has proved to be extremely valuable in highlighting and comparing the capabilities (or incapabilities) of programs used in reliability studies, the differences in the perception of various power utilities and the differences in the solution techniques. The IEEE-RTS contains a reasonably large power network which can be difficult to use for initial studies in an educational environment.