490 resultados para plant monitoring
Resumo:
This paper addresses the problem of predicting the outcome of an ongoing case of a business process based on event logs. In this setting, the outcome of a case may refer for example to the achievement of a performance objective or the fulfillment of a compliance rule upon completion of the case. Given a log consisting of traces of completed cases, given a trace of an ongoing case, and given two or more possible out- comes (e.g., a positive and a negative outcome), the paper addresses the problem of determining the most likely outcome for the case in question. Previous approaches to this problem are largely based on simple symbolic sequence classification, meaning that they extract features from traces seen as sequences of event labels, and use these features to construct a classifier for runtime prediction. In doing so, these approaches ignore the data payload associated to each event. This paper approaches the problem from a different angle by treating traces as complex symbolic sequences, that is, sequences of events each carrying a data payload. In this context, the paper outlines different feature encodings of complex symbolic sequences and compares their predictive accuracy on real-life business process event logs.
Resumo:
This article reports the main features of an innovative full-scale Structural Health Monitoring (SHM) system which has been implemented onto a landmark building on QUT Gardens Point Campus and its efficacy in capturing the recent Queensland earthquakes although they occurred almost 300 km away from where the system is located.
Resumo:
Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included “marrying” ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.
Resumo:
Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C
Resumo:
Disclosed are methods for detecting the presence of a carcinoma or an increased likelihood that a carcinoma is present in a subject. More particularly, the present invention discloses methods for diagnosis, screening, treatment and monitoring of carcinomas associated with aberrant DNA methylation of the MED15 promoter region
Resumo:
Adverse health effects caused by worker exposure to ultrafine particles have been detected in recent years. The scientific community focuses on the assessment of ultrafine aerosols in different microenvironments in order to determine the related worker exposure/dose levels. To this end, particle size distribution measurements have to be taken along with total particle number concentrations. The latter are obtainable through hand-held monitors. A portable particle size distribution analyzer (Nanoscan SMPS 3910, TSI Inc.) was recently commercialized, but so far no metrological assessment has been performed to characterize its performance with respect to well-established laboratory- based instruments such as the scanning mobility particle sizer (SMPS) spectrometer. The present paper compares the aerosol monitoring capability of the Nanoscan SMPS to the laboratory SMPS in order to evaluate whether the Nanoscan SMPS is suitable for field experiments designed to characterize particle exposure in different microenvironments. Tests were performed both in a Marple calm air chamber, where fresh diesel particulate matter and atomized dioctyl phthalate particles were monitored, and in microenvironments, where outdoor, urban, indoor aged, and indoor fresh aerosols were measured. Results show that the Nanoscan SMPS is able to properly measure the particle size distribution for each type of aerosol investigated, but it overestimates the total particle number concentration in the case of fresh aerosols. In particular, the test performed in the Marple chamber showed total concentrations up to twice those measured by the laboratory SMPS—likely because of the inability of the Nanoscan SMPS unipolar charger to properly charge aerosols made up of aggregated particles. Based on these findings, when field test exposure studies are conducted, the Nanoscan SMPS should be used in tandem
Resumo:
Background Nicotiana benthamiana is an allo-tetraploid plant, which can be challenging for de novo transcriptome assemblies due to homeologous and duplicated gene copies. Transcripts generated from such genes can be distinct yet highly similar in sequence, with markedly differing expression levels. This can lead to unassembled, partially assembled or mis-assembled contigs. Due to the different properties of de novo assemblers, no one assembler with any one given parameter space can re-assemble all possible transcripts from a transcriptome. Results In an effort to maximise the diversity and completeness of de novo assembled transcripts, we utilised four de novo transcriptome assemblers, TransAbyss, Trinity, SOAPdenovo-Trans, and Oases, using a range of k-mer sizes and different input RNA-seq read counts. We complemented the parameter space biologically by using RNA from 10 plant tissues. We then combined the output of all assemblies into a large super-set of sequences. Using a method from the EvidentialGene pipeline, the combined assembly was reduced from 9.9 million de novo assembled transcripts to about 235,000 of which about 50,000 were classified as primary. Metrics such as average bit-scores, feature response curves and the ability to distinguish paralogous or homeologous transcripts, indicated that the EvidentialGene processed assembly was of high quality. Of 35 RNA silencing gene transcripts, 34 were identified as assembled to full length, whereas in a previous assembly using only one assembler, 9 of these were partially assembled. Conclusions To achieve a high quality transcriptome, it is advantageous to implement and combine the output from as many different de novo assemblers as possible. We have in essence taking the ‘best’ output from each assembler while minimising sequence redundancy. We have also shown that simultaneous assessment of a variety of metrics, not just focused on contig length, is necessary to gauge the quality of assemblies.
Resumo:
The care processes of healthcare providers are typically considered as human-centric, flexible, evolving, complex and multi-disciplinary. Consequently, acquiring an insight in the dynamics of these care processes can be an arduous task. A novel event log based approach for extracting valuable medical and organizational information on past executions of the care processes is presented in this study. Care processes are analyzed with the help of a preferential set of process mining techniques in order to discover recurring patterns, analyze and characterize process variants and identify adverse medical events.
Resumo:
Animal models of critical illness are vital in biomedical research. They provide possibilities for the investigation of pathophysiological processes that may not otherwise be possible in humans. In order to be clinically applicable, the model should simulate the critical care situation realistically, including anaesthesia, monitoring, sampling, utilising appropriate personnel skill mix, and therapeutic interventions. There are limited data documenting the constitution of ideal technologically advanced large animal critical care practices and all the processes of the animal model. In this paper, we describe the procedure of animal preparation, anaesthesia induction and maintenance, physiologic monitoring, data capture, point-of-care technology, and animal aftercare that has been successfully used to study several novel ovine models of critical illness. The relevant investigations are on respiratory failure due to smoke inhalation, transfusion related acute lung injury, endotoxin-induced proteogenomic alterations, haemorrhagic shock, septic shock, brain death, cerebral microcirculation, and artificial heart studies. We have demonstrated the functionality of monitoring practices during anaesthesia required to provide a platform for undertaking systematic investigations in complex ovine models of critical illness.
Resumo:
Change point estimation is recognized as an essential tool of root cause analyses within quality control programs as it enables clinical experts to search for potential causes of change in hospital outcomes more effectively. In this paper, we consider estimation of the time when a linear trend disturbance has occurred in survival time following an in-control clinical intervention in the presence of variable patient mix. To model the process and change point, a linear trend in the survival time of patients who underwent cardiac surgery is formulated using hierarchical models in a Bayesian framework. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. We use Markov Chain Monte Carlo to obtain posterior distributions of the change point parameters including the location and the slope size of the trend and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time cumulative sum control chart (CUSUM) control charts for different trend scenarios. In comparison with the alternatives, step change point model and built-in CUSUM estimator, more accurate and precise estimates are obtained by the proposed Bayesian estimator over linear trends. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
High-voltage circuit breakers are among the most important equipments for ensuring the efficient and safe operation of an electric power system. On occasion, circuit breaker operators may wish to check whether equipment is performing satisfactorily and whether controlled switching systems are producing reliable and repeatable stress control. Monitoring of voltage and current waveforms during switching using established methods will provide information about the magnitude and frequency of voltage transients as a result of re-ignitions and restrikes. However, high frequency waveform measurement requires shutdown of circuit breaker and use of specialized equipment. Two utilities, Hydro-Québec in Canada and Powerlink Queensland in Australia, have been working on the development and application of a non-intrusive, cost-effective and flexible diagnostic system for monitoring high-voltage circuit breakers for reactive switching. The proposed diagnostic approach relies on the non-intrusive assessment of key parameters such as operating times, prestrike characteristics, re-ignition and restrike detection. Transient electromagnetic emissions have been identified as a promising means to evaluate the abovementioned parameters non-intrusively. This paper describes two complimentary methods developed concurrently by Powerlink and Hydro-Québec. Also, return of experiences on the application to capacitor bank and shunt reactor switching is presented.
Resumo:
AIMS: To examine changes in illicit drug consumption between peak holiday season (23 December-3 January) in Australia and a control period two months later in a coastal urban area, an inland semi-rural area and an island populated predominantly by vacationers during holidays. DESIGN: Analysis of representative daily composite wastewater samples collected from the inlet of the major wastewater treatment plant in each area. SETTING: Three wastewater treatment plants. PARTICIPANTS: Wastewater treatment plants serviced approximately 350, 000 persons in the urban area, 120,000 in the semi-rural area and 1100-2400 on the island. MEASUREMENTS: Drug residues were analysed using liquid chromatography coupled to a tandem mass spectrometer. Per capita drug consumption was estimated. Changes in drug use were quantified using Hedges' g. FINDINGS: During the holidays, cannabis consumption in the semi-rural area declined (g = -2.8) as did methamphetamine (-0.8), whereas cocaine (+1.5) and ecstasy (+1.6) use increased. In the urban area, consumption of all drugs increased during holidays (cannabis +1.6, cocaine +1.2, ecstasy +0.8 and methamphetamine +0.3). In the vacation area, methamphetamine (+0.7), ecstasy (+0.7) and cocaine (+1.1) use increased, but cannabis (-0.5) use decreased during holiday periods. CONCLUSIONS: While the peak holiday season in Australia is perceived as a period of increased drug use, this is not uniform across all drugs and areas. Substantial declines in drug use in the semi-rural area contrasted with substantial increases in urban and vacation areas. Per capita drug consumption in the vacation area was equivalent to that in the urban area, implying that these locations merit particular attention for drug use monitoring and harm minimisation measures.
Resumo:
Introduction and Aims: Holiday periods are potentially a time for increased substance use as social events and private parties are more common. Data on community illicit drug consumption during holiday periods are limited. Besides existing methods for determining drug use, such as population surveys, one emerging method is to measure illicit drugs and/or their metabolites in wastewater samples. This study examined the change in consumption of cannabis, methamphetamine, cocaine and 3,4- methylenedioxymethamphetamine in three different types of areas (an inland semi-rural area, a coastal urban area and a vacation island) with respect to holiday times. Design and Methods: Samples were collected at the inlet of the major wastewater treatment plant in each area during a key annual holiday (i.e. the summer holiday including Christmas and New Year) and control period. Illicit drug residues in the daily composited samples were measured by liquid chromatography coupled with tandem mass spectrometry. Results: Drug use varied substantially among the three areas within each monitoring period as well as between the holiday and control period within each area. Use consistently increased and peaked over New Year particularly for cocaine and 3,4-methylenedioxymethamphetamine whereas cannabis and methamphetamine were relatively less subjected to holiday times in all the areas. Discussion and Conclusions: Wastewater sampling and analysis provides higher spatio-temporal resolution than national surveys and supplements drug epidemiology studies originating primary in metropolitan locations. Such data is essential for policy makers to plan potential intervention strategies associated with these illicit substances in regional areas and other settings besides urban areas in the future.
Resumo:
Introduction and Aims Wastewater analysis provides a non-intrusive way of measuring drug use within a population. We used this approach to determine daily use of conventional illicit drugs [cannabis, cocaine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA)] and emerging illicit psychostimulants (benzylpiperazine, mephedrone and methylone) in two consecutive years (2010 and 2011) at an annual music festival. Design and Methods Daily composite wastewater samples, representative of the festival, were collected from the on-site wastewater treatment plant and analysed for drug metabolites. Data over 2 years were compared using Wilcoxon matched-pair test. Data from 2010 festival were compared with data collected at the same time from a nearby urban community using equivalent methods. Results Conventional illicit drugs were detected in all samples whereas emerging illicit psychostimulants were found only on specific days. The estimated per capita consumption of MDMA, cocaine and cannabis was similar between the two festival years. Statistically significant (P < 0.05; Z = −2.0–2.2) decreases were observed in use of methamphetamine and one emerging illicit psychostimulant (benzyl piperazine). Only consumption of MDMA was elevated at the festival compared with the nearby urban community. Discussion and Conclusions Rates of substance use at this festival remained relatively consistent over two monitoring years. Compared with the urban community, drug use among festival goers was only elevated for MDMA, confirming its popularity in music settings. Our study demonstrated that wastewater analysis can objectively capture changes in substance use at a music setting without raising major ethical issues. It would potentially allow effective assessments of drug prevention strategies in such settings in the future.
Resumo:
The measurement of illicit drug metabolites in raw wastewater is increasingly being adopted as an approach to objectively monitor population-level drug use, and is an effective complement to traditional epidemiological methods. As such, it has been widely applied in western countries. In this study, we utilised this approach to assess drug use patterns over nine days during April 2011 in Hong Kong. Raw wastewater samples were collected from the largest wastewater treatment plant serving a community of approximately 3.5 million people and analysed for excreted drug residues including cocaine, ketamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and key metabolites using liquid chromatography coupled with tandem mass spectrometry. The overall drug use pattern determined by wastewater analysis was consistent with that have seen amongst people coming into contact with services in relation to substance use; among our target drugs, ketamine (estimated consumption: 1400–1600 mg/day/1000 people) was the predominant drug followed by methamphetamine (180–200 mg/day/1000 people), cocaine (160–180 mg/day/1000 people) and MDMA (not detected). The levels of these drugs were relatively steady throughout the monitoring period. Analysing samples at higher temporal resolution provided data on diurnal variations of drug residue loads. Elevated ratios of cocaine to benzoylecgonine were identified unexpectedly in three samples during the evening and night, providing evidence for potential dumping events of cocaine. This study provides the first application of wastewater analysis to quantitatively evaluate daily drug use in an Asian metropolitan community. Our data reinforces the benefit of wastewater monitoring to health and law enforcement authorities for strategic planning and evaluation of drug intervention strategies.