517 resultados para line: identification
Resumo:
Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.
Resumo:
Time-expanded and heterodyned echolocation calls of the New Zealand long-tailed Chalinolobus tuberculatus and lesser short-tailed bat Mystacina tuberculata were recorded and digitally analysed. Temporal and spectral parameters were measured from time-expanded calls and power spectra generated for both time-expanded and heterodyned calls. Artificial neural networks were trained to classify the calls of both species using temporal and spectral parameters and power spectra as input data. Networks were then tested using data not previously seen. Calls could be unambiguously identified using parameters and power spectra from time-expanded calls. A neural network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 40 kHz (the frequency with the most energy of the fundamental of C. tuberculatus call), could identify 99% and 84% of calls of C. tuberculatus and M. tuberculata, respectively. A second network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 27 kHz (the frequency with the most energy of the fundamental of M. tuberculata call), could identify 34% and 100% of calls of C. tuberculatus and M. tuberculata, respectively. This study represents the first use of neural networks for the identification of bats from their echolocation calls. It is also the first study to use power spectra of time-expanded and heterodyned calls for identification of chiropteran species. The ability of neural networks to identify bats from their echolocation calls is discussed, as is the ecology of both species in relation to the design of their echolocation calls.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
The application of robotics to protein crystallization trials has resulted in the production of millions of images. Manual inspection of these images to find crystals and other interesting outcomes is a major rate-limiting step. As a result there has been intense activity in developing automated algorithms to analyse these images. The very first step for most systems that have been described in the literature is to delineate each droplet. Here, a novel approach that reaches over 97% success rate and subsecond processing times is presented. This will form the seed of a new high-throughput system to scrutinize massive crystallization campaigns automatically. © 2010 International Union of Crystallography Printed in Singapore-all rights reserved.
Resumo:
Nowadays, integration of small-scale electricity generators, known as Distributed Generation (DG), into distribution networks has become increasingly popular. This tendency together with the falling price of DG units has a great potential in giving the DG a better chance to participate in voltage regulation process, in parallel with other regulating devices already available in the distribution systems. The voltage control issue turns out to be a very challenging problem for distribution engineers, since existing control coordination schemes need to be reconsidered to take into account the DG operation. In this paper, a control coordination approach is proposed, which is able to utilize the ability of the DG as a voltage regulator, and at the same time minimize the interaction of DG with another DG or other active devices, such as On-load Tap Changing Transformer (OLTC). The proposed technique has been developed based on the concepts of protection principles (magnitude grading and time grading) for response coordination of DG and other regulating devices and uses Advanced Line Drop Compensators (ALDCs) for implementation. A distribution feeder with tap changing transformer and DG units has been extracted from a practical system to test the proposed control technique. The results show that the proposed method provides an effective solution for coordination of DG with another DG or voltage regulating devices and the integration of protection principles has considerably reduced the control interaction to achieve the desired voltage correction.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
This study investigated interactions of protein-cleaving enzymes (or proteases) that promote prostate cancer progression. It provides the first evidence of a novel regulatory network of protease activity at the surface of cells. The proteases kallikrein-related peptidases 4 and 14, and matrix metalloproteinases 3 and 9 are cleaved at the cell surface by the cell surface proteases hepsin and TMPRSS2. These cleavage events potentially regulate activation of downstream targets of kallikrein 4 and 14 such as cell surface signalling via the protease-activated receptors (PARs) and cell growth-promoting factors such as hepatocyte-growth factor.
Resumo:
Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children’s exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools.
Resumo:
This thesis in software engineering presents a novel automated framework to identify similar operations utilized by multiple algorithms for solving related computing problems. It provides a new effective solution to perform multi-application based algorithm analysis, employing fundamentally light-weight static analysis techniques compared to the state-of-art approaches. Significant performance improvements are achieved across the objective algorithms through enhancing the efficiency of the identified similar operations, targeting discrete application domains.
Resumo:
As cities are rapidly developing new interventions against climate change, embedding renewable energy in public spaces is an important strategy. However, most interventions primarily include environmental sustainability while neglecting the social and economic interrelationships of electricity production. Although there is a growing interest in sustainability within environmental design and landscape architecture, public spaces are still awaiting viable energy-conscious design and assessment interventions. The purpose of this paper is to investigate this issue in a renowned public space—Ballast Point Park in Sydney—using a triple bottom line (TBL) case study approach. The emerging factors and relationships of each component of TBL, within the context of public open space, are identified and discussed. With specific focus on renewable energy distribution in and around Ballast Point Park, the paper concludes with a general design framework, which conceptualizes an optimal distribution of onsite electricity produced from renewable sources embedded in public open spaces.
Resumo:
A major virulence factor for Yersinia pseudotuberculosis is lipopolysaccharide, including O-polysaccharide (OPS). Currently, the OPS based serotyping scheme for Y. pseudotuberculosis includes 21 known O-serotypes, with genetic and structural data available for 17 of them. The completion of the OPS structures and genetics of this species will enable the visualization of relationships between O-serotypes and allow for analysis of the evolutionary processes within the species that give rise to new serotypes. Here we present the OPS structure and gene cluster of serotype O:12, thus adding one more to the set of completed serotypes, and show that this serotype is present in both Y. pseudotuberculosis and the newly identified Y. similis species. The O:12 structure is shown to include two rare sugars: 4-C[(R)-1-hydroxyethyl]-3,6-dideoxy-d-xylo-hexose (d-yersiniose) and 6-deoxy-l-glucopyranose (l-quinovose). We have identified a novel putative guanine diphosphate (GDP)-l-fucose 4-epimerase gene and propose a pathway for the synthesis of GDP-l-quinovose, which extends the known GDP-l-fucose pathway.
Resumo:
It has been well established nationally and internationally that fatigue-related driving is an important contributory factor in fatal and serious injury crashes. The purpose of this report was to survey a large, representative sample of residents living in both the NSW and ACT to ask about their experience of fatigue and their involvement in fatigue-related crashes and incidents. This will provide valuable data about the number and characteristics of fatigue-related crashes and incidents of ACT residents. Specifically this study assessed the prevalence of incidents of fatigue-related driving for residents of NSW and the ACT, the characteristics surrounding the incident, if the report would fit within the NSW, QLD, or ATSB proxy definition or if it would fall outside of the proxy definition...