493 resultados para aggressive scenario
Resumo:
The research reported here addresses the problem of detecting and tracking independently moving objects from a moving observer in real-time, using corners as object tokens. Corners are detected using the Harris corner detector, and local image-plane constraints are employed to solve the correspondence problem. The approach relaxes the restrictive static-world assumption conventionally made, and is therefore capable of tracking independently moving and deformable objects. Tracking is performed without the use of any 3-dimensional motion model. The technique is novel in that, unlike traditional feature-tracking algorithms where feature detection and tracking is carried out over the entire image-plane, here it is restricted to those areas most likely to contain-meaningful image structure. Two distinct types of instantiation regions are identified, these being the “focus-of-expansion” region and “border” regions of the image-plane. The size and location of these regions are defined from a combination of odometry information and a limited knowledge of the operating scenario. The algorithms developed have been tested on real image sequences taken from typical driving scenarios. Implementation of the algorithm using T800 Transputers has shown that near-linear speedups are achievable, and that real-time operation is possible (half-video rate has been achieved using 30 processing elements).
Resumo:
The research reported here addresses the problem of detecting and tracking independently moving objects from a moving observer in real time, using corners as object tokens. Local image-plane constraints are employed to solve the correspondence problem removing the need for a 3D motion model. The approach relaxes the restrictive static-world assumption conventionally made, and is therefore capable of tracking independently moving and deformable objects. The technique is novel in that feature detection and tracking is restricted to areas likely to contain meaningful image structure. Feature instantiation regions are defined from a combination of odometry informatin and a limited knowledge of the operating scenario. The algorithms developed have been tested on real image sequences taken from typical driving scenarios. Preliminary experiments on a parallel (transputer) architecture indication that real-time operation is achievable.
Resumo:
This paper presents a series of studies on situated interfaces for community engagement. Firstly, we identify five recurring design challenges as well as four common strategies used to overcome them. We then assess the effectiveness of these strategies through field studies with public polling interfaces. We developed two very different polling interfaces in the form of (1) a web application running on an iPad mounted on a stand, allowing one vote at a time, and (2) a playful full-body interaction application for a large urban screen allowing concurrent participation. We deployed both interfaces in an urban precinct with high pedestrian traffic and equipped with a large urban screen. Analysing discoverability and learnability of each scenario, we derive insights regarding effective ways of blending community engagement interfaces into the built environment, while attracting the attention of passers-by and communicating the results of civic participation.
Resumo:
For future planetary robot missions, multi-robot-systems can be considered as a suitable platform to perform space mission faster and more reliable. In heterogeneous robot teams, each robot can have different abilities and sensor equipment. In this paper we describe a lunar demonstration scenario where a team of mobile robots explores an unknown area and identifies a set of objects belonging to a lunar infrastructure. Our robot team consists of two exploring scout robots and a mobile manipulator. The mission goal is to locate the objects within a certain area, to identify the objects, and to transport the objects to a base station. The robots have a different sensor setup and different capabilities. In order to classify parts of the lunar infrastructure, the robots have to share the knowledge about the objects. Based on the different sensing capabilities, several information modalities have to be shared and combined by the robots. In this work we propose an approach using spatial features and a fuzzy logic based reasoning for distributed object classification.
Resumo:
This paper compares different state-of-the-art exploration strategies for teams of mobile robots exploring an unknown environment. The goal is to help in determining a best strategy for a given multi-robot scenario and optimization target. Experiments are done in a 2D-simulation environment with 5 robots that are equipped with a horizontal laser range finder. Required components like SLAM, path planning and obstacle avoidance of every robot are included in a full-system simulation. To evaluate different strategies the time to finish exploration, the number of measurements that have been integrated into the map and the development in size of the explored area over time are used. The results of extensive test runs on three environments with different characteristics show that simple strategies can perform fairly well in many situations but specialized strategies can improve performance with regards to their targeted evaluation measure.
Resumo:
Semantic perception and object labeling are key requirements for robots interacting with objects on a higher level. Symbolic annotation of objects allows the usage of planning algorithms for object interaction, for instance in a typical fetchand-carry scenario. In current research, perception is usually based on 3D scene reconstruction and geometric model matching, where trained features are matched with a 3D sample point cloud. In this work we propose a semantic perception method which is based on spatio-semantic features. These features are defined in a natural, symbolic way, such as geometry and spatial relation. In contrast to point-based model matching methods, a spatial ontology is used where objects are rather described how they "look like", similar to how a human would described unknown objects to another person. A fuzzy based reasoning approach matches perceivable features with a spatial ontology of the objects. The approach provides a method which is able to deal with senor noise and occlusions. Another advantage is that no training phase is needed in order to learn object features. The use-case of the proposed method is the detection of soil sample containers in an outdoor environment which have to be collected by a mobile robot. The approach is verified using real world experiments.
Resumo:
This presentation provides a beginning discussion about what the literature reports about incarcerated young people. Incarcerated Indigenous and low SES young people typically have very low literacy and mathematics skills which precludes them from future education and or employment opportunities, thus continuing the cycle of disadvantage, exclusion and despair(Payne, 2007). Being locked out of learning, they are stuck in a cycle of underachievement, a scenario which contributes to unacceptably high levels of recidivism(ACER, 2014). Success at education is considered an important protective factor against delinquent behaviours such as offending, substance abuse and truancy. Youth education and training centres provide educational opportunities for the incarcerated Indigenous youth but achievement continues to be lower than expected, particularly in mathematics. This presentation provides an introductory literature review focusing on incarcerated young people and education. It is also the preliminary writing for a small pilot project currently being conducted in one Youth Education and Training Centre in Australia.
Resumo:
Fast restoration of critical loads and non-black-start generators can significantly reduce the economic losses caused by power system blackouts. In a parallel power system restoration scenario, the sectionalization of restoration subsystems plays a very important role in determining the pickup of critical loads before synchronization. Most existing research mainly focuses on the startup of non-black-start generators. The restoration of critical loads, especially the loads with cold load characteristics, has not yet been addressed in optimizing the subsystem divisions. As a result, sectionalized restoration subsystems cannot achieve the best coordination between the pickup of loads and the ramping of generators. In order to generate sectionalizing strategies considering the pickup of critical loads in parallel power system restoration scenarios, an optimization model considering power system constraints, the characteristics of the cold load pickup and the features of generator startup is proposed in this paper. A bi-level programming approach is employed to solve the proposed sectionalizing model. In the upper level the optimal sectionalizing problem for the restoration subsystems is addressed, while in the lower level the objective is to minimize the outage durations of critical loads. The proposed sectionalizing model has been validated by the New-England 39-bus system and the IEEE 118-bus system. Further comparisons with some existing methods are carried out as well.
Resumo:
Purpose: Many haematological cancer survivors report long-term physiological and psychosocial effects beyond treatment completion. These survivors continue to experience impaired quality of life (QoL) as a result of their disease and aggressive treatment. As key members of the multidisciplinary team, the purpose of this study is to examine the insights of cancer nurses to inform future developments in survivorship care provision. Methods: Open text qualitative responses from two prospective Australian cross-sectional surveys of nurses (n=136) caring for patients with haematological cancer. Data were analysed thematically, using an inductive approach to identify themes. Results: This study has identified a number of issues that nurses perceive as barriers to quality survivorship care provision. Two main themes were identified; the first relating to the challenges nurses face in providing care (‘care challenges’), and the second relating to the challenges of providing survivorship care within contemporary health care systems (‘system challenges’). Conclusions: Cancer nurses perceive the nature of haematological cancer and its treatment, and of the health care system itself, as barriers to the provision of quality survivorship care. Care challenges such as the lack of a standard treatment path and the relapsing or remitting nature of haematological cancers may be somewhat intractable, but system challenges relating to clearly defining and delineating professional responsibilities and exchanging information with other clinicians are not. Implications for Cancer Survivors: Addressing the issues identified will facilitate cancer nurses’ provision of survivorship care, and help address haematological survivors’ needs with regard to the physical and psychosocial consequences of their cancer and treatment.
Resumo:
Objective: The aim of the present pilot study was to examine the effectiveness of a relaxation massage therapy programme in reducing stress, anxiety and aggression on a young adult psychiatric inpatient unit. Method: This was a prospective, non-randomized intervention study comparing treatment as usual (TAU) with TAU plus massage therapy intervention (MT) over consecutive 7 week blocks (May–August 2006). MT consisted of a 20 min massage therapy session offered daily to patients during their period of hospitalization. The Kennedy Nurses’ Observational Scale for Inpatient Evaluation (NOSIE), the Symptom Checklist-90–Revised (SCL-90-R), the State–Trait Anxiety Inventory (STAI) and stress hormone (saliva cortisol) levels were used to measure patient outcomes at admission and discharge from the unit. The Staff Observation Aggression Scale–Revised (SOAS-R) was used to monitor the frequency and severity of aggressive incidents on the unit. Results: There was a significant reduction in self-reported anxiety (p < 0.001), resting heart rate (p < 0.05) and cortisol levels (p < 0.05) immediately following the initial and final massage therapy sessions. Significant improvements in hostility (p = 0.007) and depression scores (p < 0.001) on the SCL-90-R were observed in both treatment groups. There was no group×time interaction on any of the measures. Poor reliability of staff-reported incidents on the SOAS-R limited the validity of results in this domain. Conclusions: Massage therapy had immediate beneficial effects on anxiety-related measures and may be a useful de-escalating tool for reducing stress and anxiety in acutely hospitalized psychiatric patients. Study limitations preclude any definite conclusions on the effect of massage therapy on aggressive incidents in an acute psychiatric setting. Randomized controlled trials are warranted.
Resumo:
This paper discusses three different ways of applying the single-objective binary genetic algorithm into designing the wind farm. The introduction of different applications is through altering the binary encoding methods in GA codes. The first encoding method is the traditional one with fixed wind turbine positions. The second involves varying the initial positions from results of the first method, and it is achieved by using binary digits to represent the coordination of wind turbine on X or Y axis. The third is the mixing of the first encoding method with another one, which is by adding four more binary digits to represent one of the unavailable plots. The goal of this paper is to demonstrate how the single-objective binary algorithm can be applied and how the wind turbines are distributed under various conditions with best fitness. The main emphasis of discussion is focused on the scenario of wind direction varying from 0° to 45°. Results show that choosing the appropriate position of wind turbines is more significant than choosing the wind turbine numbers, considering that the former has a bigger influence on the whole farm fitness than the latter. And the farm has best performance of fitness values, farm efficiency, and total power with the direction between 20°to 30°.
Resumo:
There is an increasing demand for Unmanned Aerial Systems (UAS) to carry suspended loads as this can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. The constant variation in operating point induced by the slung load also causes conventional controllers to demand increased control effort. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present a novel controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions. The paper describes a System Dynamics and Control Simulation Toolbox for use with MATLAB/SIMULINK which includes a detailed simulation of the multi-rotor and slung load as well as a predictive controller to manage the nonlinear dynamics whilst accounting for system constraints. It is demonstrated that the controller simultaneously tracks specified waypoints and actively damps large slung load oscillations. A linear-quadratic regulator (LQR) is derived and control performance is compared. Results show the improved performance of the predictive controller for a larger flight envelope, including aggressive manoeuvres and large slung load displacements. The computational cost remains relatively small, amenable to practical implementations.
Resumo:
AIMS The aim of this narrative review of the literature was to examine the current state of knowledge regarding the impact of aggressive surgical interventions for severe stroke on patient and caregiver quality of life and caregiver outcomes. BACKGROUND Decompressive hemicraniectomy (DHC) is a surgical therapeutic option for treatment of massive middle cerebral artery infarction (MCA), lobar intracerebral hemorrhage (ICH), and severe aneurysmal subarachnoid hemorrhage (aSAH). Decompressive hemicraniectomy has been shown to be effective in reducing mortality in these three life-threatening conditions. Significant functional impairment is an experience common to many severe stroke survivors worldwide and close relatives experience decision-making difficulty when confronted with making life or death choices related to surgical intervention for severe stroke. DATA SOURCES Academic Search Premier, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Medline, and PsychInfo. REVIEW METHODS A narrative review methodology was utilized in this review of the literature related to long-term outcomes following decompressive hemicraniectomy for stroke. The key words decompressive hemicraniectomy, severe stroke, middle cerebral artery stroke, subarachnoid hemorrhage, lobar ICH, intracerebral hemorrhage, quality of life, and caregivers, literature review were combined to search the databases. RESULTS Good functional outcomes following DHC for life-threatening stroke have been shown to be associated with younger age and few co-morbid conditions. It was also apparent that quality of life was reduced for many stroke survivors, although not assessed routinely in studies. Caregiver burden has not been systematically studied in this population. CONCLUSION Most patients and caregivers in the studies reviewed agreed with the original decision to undergo DHC and would make the same decision again. However, little is known about quality of life for both patients and caregivers and caregiver burden over the long-term post-surgery. Further research is needed to generate information and interventions for the management of ongoing patient and carer recovery following DHC for severe stroke.
Resumo:
Conceptual combination performs a fundamental role in creating the broad range of compound phrases utilised in everyday language. While the systematicity and productivity of language provide a strong argument in favour of assuming compositionality, this very assumption is still regularly questioned in both cognitive science and philosophy. This article provides a novel probabilistic framework for assessing whether the semantics of conceptual combinations are compositional, and so can be considered as a function of the semantics of the constituent concepts, or not. Rather than adjudicating between different grades of compositionality, the framework presented here contributes formal methods for determining a clear dividing line between compositional and non-compositional semantics. Compositionality is equated with a joint probability distribution modelling how the constituent concepts in the combination are interpreted. Marginal selectivity is emphasised as a pivotal probabilistic constraint for the application of the Bell/CH and CHSH systems of inequalities (referred to collectively as Bell-type). Non-compositionality is then equated with either a failure of marginal selectivity, or, in the presence of marginal selectivity, with a violation of Bell-type inequalities. In both non-compositional scenarios, the conceptual combination cannot be modelled using a joint probability distribution with variables corresponding to the interpretation of the individual concepts. The framework is demonstrated by applying it to an empirical scenario of twenty-four non-lexicalised conceptual combinations.
Resumo:
We present a clustering-only approach to the problem of speaker diarization to eliminate the need for the commonly employed and computationally expensive Viterbi segmentation and realignment stage. We use multiple linear segmentations of a recording and carry out complete-linkage clustering within each segmentation scenario to obtain a set of clustering decisions for each case. We then collect all clustering decisions, across all cases, to compute a pairwise vote between the segments and conduct complete-linkage clustering to cluster them at a resolution equal to the minimum segment length used in the linear segmentations. We use our proposed cluster-voting approach to carry out speaker diarization and linking across the SAIVT-BNEWS corpus of Australian broadcast news data. We compare our technique to an equivalent baseline system with Viterbi realignment and show that our approach can outperform the baseline technique with respect to the diarization error rate (DER) and attribution error rate (AER).