523 resultados para Urea foliar application
Resumo:
Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.
Resumo:
The extent of exothermicity associated with the construction of large-volume methacrylate monolithic columns has somewhat obstructed the realisation of large-scale rapid biomolecule purification especially for plasmid-based products which have proven to herald future trends in biotechnology. A novel synthesis technique via a heat expulsion mechanism was employed to prepare a 40 mL methacrylate monolith with a homogeneous radial pore structure along its thickness. Radial temperature gradient was recorded to be only 1.8 °C. Maximum radial temperature recorded at the centre of the monolith was 62.3 °C, which was only 2.3 °C higher than the actual polymerisation temperature. Pore characterisation of the monolithic polymer showed unimodal pore size distributions at different radial positions with an identical modal pore size of 400 nm. Chromatographic characterisation of the polymer after functionalisation with amino groups displayed a persistent dynamic binding capacity of 15.5 mg of plasmid DNA/mL. The maximum pressure drop recorded was only 0.12 MPa at a flow rate of 10 mL/min. The polymer demonstrated rapid separation ability by fractionating Escherichia coli DH5α-pUC19 clarified lysate in only 3 min after loading. The plasmid sample collected after the fast purification process was tested to be a homogeneous supercoiled plasmid with DNA electrophoresis and restriction analysis.
Resumo:
Non-use values (i.e. economic values assigned by individuals to ecosystem goods and services unrelated to current or future uses) provide one of the most compelling incentives for the preservation of ecosystems and biodiversity. Assessing the non-use values of non-users is relatively straightforward using stated preference methods, but the standard approaches for estimating non-use values of users (stated decomposition) have substantial shortcomings which undermine the robustness of their results. In this paper, we propose a pragmatic interpretation of non-use values to derive estimates that capture their main dimensions, based on the identification of a willingness to pay for ecosystem protection beyond one's expected life. We empirically test our approach using a choice experiment conducted on coral reef ecosystem protection in two coastal areas in New Caledonia with different institutional, cultural, environmental and socio-economic contexts. We compute individual willingness to pay estimates, and derive individual non-use value estimates using our interpretation. We find that, a minima, estimates of non-use values may comprise between 25 and 40% of the mean willingness to pay for ecosystem preservation, less than has been found in most studies.
Resumo:
This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.
Resumo:
Researchers spend an average of 38 working days preparing an NHMRC Project Grant proposal, but with success rates of just 15% then over 500 years of researcher went into failed applications in 2014. This time would likely have been better spent on actual research. Many applications are non-competitive and could possibly be culled early, saving time for both researchers and funding agencies. Our analysis of the major health and medical scheme in Australia estimated that 61% of applications were never likely to be funded...
Resumo:
Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods which have been recently employed to analyse PNSD data, however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and Silhouette width validation values and the K-means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K-means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectra to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.
Resumo:
One quarter of Australian children are overweight or obese (ABS, 2010), putting them at increased risk of physical and psychological health problems (Reilly et al., 2003). Overweight and obesity in childhood tends to persist into adulthood and is associated with premature death and morbidity (Reilly & Kelly, 2011). Increases in Australian children’s weight have coincided with declines in active transportation, such as walking, to school (Salmon et al., 2005). Investigating the factors which influence walking to school is therefore important, particularly since walking to school is a low cost and effective means of reducing excess weight (Rosenberg et al., 2006) that can be easily integrated into daily routine (Brophy et al., 2011). While research in this area has expanded (e.g., Brophy et al., 2011; Giles-Corti et al., 2010), it is largely atheoretical (exceptions Napier et al., 2011). This is an important gap from a social marketing perspective given the use of theory lies at the foundation of the framework (NSMC, 2006) and a continued lack of theory use is observed (Luca & Suggs, 2013). The aim of this paper is to empirically examine a widely adopted theory, the deconstructed Theory of Reasoned Action (TRA) (Fishbein & Azjen, 1975), to understand the relative importance of attitude and subjective norms in determining intentions to increase walk to school behaviour.
Resumo:
Increases in childhood obesity have coincided with declines in active transportation to school. This research builds on largely atheoretical extant literature examining factors that influence walk to school behavior through application of the Theory of Planned Behavior (TPB). Understanding caregivers’ decision for their child to walk to/from school is key to developing interventions to promote this cost-effective and accessible health behavior. The results from an online survey of 512 caregivers provide support for the TPB, highlighting the important role of subjective norms. This suggests marketers should nurture caregivers’ perception that important others approve of walking to school.