576 resultados para Photovoltaic cells.
Resumo:
BACKGROUND INFORMATION: Evidence has shown that mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT) are linked to stem cell properties. We currently lack a model showing how the occurrence of MET and EMT in immortalised cells influences the maintenance of stem cell properties. Thus, we established a project aiming to investigate the roles of EMT and MET in the acquisition of stem cell properties in immortalised oral epithelial cells. RESULTS: In this study, a retroviral transfection vector (pLXSN-hTERT) was used to immortalise oral epithelial cells by insertion of the hTERT gene (hTERT(+)-oral mucosal epithelial cell line [OME]). The protein and RNA expression of EMT transcriptional factors (Snail, Slug and Twist), their downstream markers (E-cadherin and N-cadherin) and embryonic stem cell markers (OCT4, Nanog and Sox2) were studied by reverse transcription PCR and Western blots in these cells. Some EMT markers were detected at both mRNA and protein levels. Adipocytes and bone cells were noted in the multi-differentiation assay, showing that the immortal cells underwent EMT. The differentiation assay for hTERT(+)-OME cells revealed the recovery of epithelial phenotypes, implicating the presence of MET. The stem cell properties were confirmed by the detection of appropriate markers. Altered expression of alpha-tubulin and gamma-tubulin in both two-dimensional-cultured (without serum) and three-dimensional-cultured hTERT(+)-OME spheroids indicated the re-programming of cytoskeleton proteins which is attributed to MET processes in hTERT(+)-OME cells. CONCLUSIONS: EMT and MET are essential for hTERT-immortalised cells to maintain their epithelial stem cell properties.
Resumo:
The graft-versus-myeloma (GVM) effect represents a powerful form of immune attack exerted by alloreactive T cells against multiple myeloma cells, which leads to clinical responses in multiple myeloma transplant recipients. Whether myeloma cells are themselves able to induce alloreactive T cells capable of the GVM effect is not defined. Using adoptive transfer of T naive cells into myeloma-bearing mice (established by transplantation of human RPMI8226-TGL myeloma cells into CD122(+) cell-depleted NOD/SCID hosts), we found that myeloma cells induced alloreactive T cells that suppressed myeloma growth and prolonged survival of T cell recipients. Myeloma-induced alloreactive T cells arising in the myeloma-infiltrated bones exerted cytotoxic activity against resident myeloma cells, but limited activity against control myeloma cells obtained from myeloma-bearing mice that did not receive T naive cells. These myeloma-induced alloreactive T cells were derived through multiple CD8(+) T cell divisions and enriched in double-positive (DP) T cells coexpressing the CD8alphaalpha and CD4 coreceptors. MHC class I expression on myeloma cells and contact with T cells were required for CD8(+) T cell divisions and DP-T cell development. DP-T cells present in myeloma-infiltrated bones contained a higher proportion of cells expressing cytotoxic mediators IFN-gamma and/or perforin compared with single-positive CD8(+) T cells, acquired the capacity to degranulate as measured by CD107 expression, and contributed to an elevated perforin level seen in the myeloma-infiltrated bones. These observations suggest that myeloma-induced alloreactive T cells arising in myeloma-infiltrated bones are enriched with DP-T cells equipped with cytotoxic effector functions that are likely to be involved in the GVM effect.
Resumo:
A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.
Resumo:
Melanopsin containing intrinsically photosensitive Retinal Ganglion Cells (ipRGCs) are a class of photoreceptors with established roles in non-image forming processes. Their contributions to image forming vision may include the estimation of brightness. Animal models have been central for understanding the physiological mechanisms of ipRGC function and there is evidence of conservation of function across species. ipRGCs can be divided into 5 ganglion cell subtypes that show morphological and functional diversity. Research in humans has established that ipRGCs signal environmental irradiance to entrain the central body clock to the solar day for regulating circadian processes and sleep. In addition, ipRGCs mediate the pupil light reflex (PLR), making the PLR a readily accessible behavioural marker of ipRGC activity. Less is known about ipRGC function in retinal and optic nerve disease, with emerging research providing insight into their function in diabetes, retinitis pigmentosa, glaucoma and hereditary optic neuropathy. We briefly review the anatomical distributions, projections and basic physiological mechanisms of ipRGCs, their proposed and known functions in animals and humans with and without eye disease. We introduce a paradigm for differentiating inner and outer retinal inputs to the pupillary control pathway in retinal disease and apply this paradigm to patients with age-related macular degeneration (AMD). In these cases of patients with AMD, we provide the initial evidence that ipRGC function is altered, and that the dysfunction is more pronounced in advanced disease. Our perspective is that with refined pupillometry paradigms, the pupil light reflex can be extended to AMD assessment as a tool for the measurement of inner and outer retinal dysfunction.
Resumo:
Heterojunction organic photovoltaics have been the subject of intensive academic interest over the past two decades, and significant commercial efforts have been directed towards this area with the vision of developing the next generation of low-cost solar cells. Materials development has played a vital role in the dramatic improvement of organic solar cell performance in recent years, and this is driven primarily by the advancement of p-type semiconductors as donor materials. With the highest performing solar cells today dominated by acceptors based on members of the fullerene family, much less attention has been devoted to other classes of n-type acceptors. In this review, we will provide an overview of the progress in the synthesis, characterization and implementation of the various classes of non-fullerenebased n-type organic acceptors for photovoltaic applications.
Resumo:
In this work, we report a novel donor-acceptor based solution processable low band gap polymer semiconductor, PDPP-TNT, synthesized via Suzuki coupling using condensed diketopyrrolopyrrole (DPP) as an acceptor moiety with a fused naphthalene donor building block in the polymer backbone. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The hole mobilities of 0.65 cm2 V-1 s-1 and 0.98 cm2 V -1 s-1 are achieved respectively in bottom gate and dual gate OTFT devices with on/off ratios in the range of 105 to 10 7. Additionally, due to its appropriate HOMO (5.29 eV) energy level and optimum optical band gap (1.50 eV), PDPP-TNT is a promising candidate for organic photovoltaic (OPV) applications. When this polymer semiconductor is used as a donor and PC71BM as an acceptor in OPV devices, high power conversion efficiencies (PCE) of 4.7% are obtained. Such high mobility values in OTFTs and high PCE in OPV make PDPP-TNT a very promising polymer semiconductor for a wide range of applications in organic electronics.
Resumo:
In this work, we report design, synthesis and characterization of solution processable low band gap polymer semiconductors, poly{3,6-difuran-2-yl-2,5-di(2- octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-phenylene} (PDPP-FPF), poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene} (PDPP-FNF) and poly{3,6-difuran-2-yl-2,5-di(2- octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-anthracene} (PDPP-FAF) using the furan-containing 3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DBF) building block. As DBF acts as an acceptor moiety, a series of donor-acceptor (D-A) copolymers can be generated when it is attached alternatively with phenylene, naphthalene or anthracene donor comonomer blocks. Optical and electrochemical characterization of thin films of these polymers reveals band gaps in the range of 1.55-1.64 eV. These polymers exhibit excellent hole mobility when used as the active layer in organic thin-film transistor (OTFT) devices. Among the series, the highest hole mobility of 0.11 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices using PDPP-FNF. When these polymers are used as a donor and [70]PCBM as the acceptor in organic photovoltaic (OPV) devices, power conversion efficiencies (PCE) of 2.5 and 2.6% are obtained for PDPP-FAF and PDPP-FNF polymers, respectively. Such mobility values in OTFTs and performance in OPV make furan-containing DBF a very promising block for designing new polymer semiconductors for a wide range of organic electronic applications.
Resumo:
New push-pull copolymers based on thiophene (donor) and benzothiadiazole (acceptor) units, poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co- thiophene] (PT3B1) and poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] (PT2B2), are designed and synthesized via Stille and Suzuki coupling routes respectively. Gel permeation chromatography shows the number average molecular weights are 31100 and 8400 g mol-1 for the two polymers, respectively. Both polymers have shown absorption throughout a wide range of the UV-vis region, from 300 to 650 nm. A significant red shift of the absorption edge is observed in thin films compared to solution of the copolymers; the optical band gap is in the range of 1.7 to 1.8 eV. Cyclic voltammetry indicates reversible oxidation and reduction processes with HOMO energy levels calculated to be in the range of 5.2 to 5.4 eV. Upon testing both materials for organic field-effect transistors (OFETs), PT3B1 showed a hole mobility of 6.1 × 10-4 cm2 V-1 s -1, while PT2B2 did not show any field effect transport. Both copolymers displayed a photovoltaic response when combined with a methanofullerene as an electron acceptor. The best performance was achieved when the copolymer PT3B1 was blended with [70]PCBM in a 1:4 ratio, exhibiting a short-circuit current of 7.27 mA cm-2, an open circuit voltage of 0.85 V, and a fill factor of 41% yielding a power conversion efficiency of 2.54% under simulated air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW cm-2). Similar devices utilizing PT2B2 in place of PT3B1 demonstrated reduced performance with a short-circuit current of 4.8 mA cm -2, an open circuit voltage of 0.73 V, and a fill factor of 30% resulting in a power conversion efficiency of roughly 1.06%.
Resumo:
Bulk heterojunction organic solar cells based on poly[4,7-bis(3- dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] and [6,6]-phenyl C71-butyric acid methyl ester are investigated. A prominent kink is observed in the fourth quadrant of the current density-voltage (J-V) response. Annealing the active layer prior to cathode deposition eliminates the kink. The kink is attributed to an extraction barrier. The J-V response in these devices is well described by a power law. This behavior is attributed to an imbalance in charge carrier mobility. An expected photocurrent for the device displaying a kink in the J-V response is determined by fitting to a power law. The difference between the expected and measured photocurrent allows for the determination of a voltage drop within the device. Under simulated 1 sun irradiance, the peak voltage drop and contact resistance at short circuit are 0.14 V and 90 Ω, respectively. © 2012 American Institute of Physics.
Resumo:
This paper explores a new breed of energy storage system interfacing for grid connected photovoltaic (PV) systems. The proposed system uses the popular dual inverter topology in which one inverter is supplied by a PV cell array and the other by a Battery Energy Storage System (BESS). The resulting conversion structure is controlled in a way that both demand matching and maximum power point tracking of the PV cell array are performed simultaneously. This dual inverter topology can produces 2, 3, 4 and 5 level inverter voltage waveforms at the dc-link voltage ratios of 0:1, 1:1, 2:1 and 3:2 respectively. Since the output voltage of the PV cell array and the battery are uncorrelated and dynamically change, the resulting dc-link voltage ratio can take non-integer values as well. These noninteger dc-link voltage ratios produce unevenly distributed space vectors. Therefore, the main issue with the proposed system is the generation of undistorted current even in the presence of unevenly distributed and dynamically changing space vectors. A modified space vector modulation method is proposed in this paper to address this issue and its efficacy is proved by simulation results. The ability of the proposed system to act as an active power source is also verified.
Resumo:
Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa.
Resumo:
The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141(+) DC subset. CD141(+) DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis. They are characterized by high expression of toll-like receptor 3, production of IL-12p70 and IFN-beta, and superior capacity to induce T helper 1 cell responses, when compared with the more commonly studied CD1c(+) DC subset. Polyinosine-polycytidylic acid (poly I:C)-activated CD141(+) DCs have a superior capacity to cross-present soluble protein antigen (Ag) to CD8(+) cytotoxic T lymphocytes than poly I:C-activated CD1c(+) DCs. Importantly, CD141(+) DCs, but not CD1c(+) DCs, were endowed with the capacity to cross-present viral Ag after their uptake of necrotic virus-infected cells. These findings establish the CD141(+) DC subset as an important functionally distinct human DC subtype with characteristics similar to those of the mouse CD8 alpha(+) DC subset. The data demonstrate a role for CD141(+) DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.
Resumo:
Staphylococcus saprophyticus is an important cause of urinary tract infection (UTI), particularly among young women, and is second only to uropathogenic Escherichia coli as the most frequent cause of UTI. The molecular mechanisms of urinary tract colonization by S. saprophyticus remain poorly understood. We have identified a novel 6.84 kb plasmid-located adhesin-encoding gene in S. saprophyticus strain MS1146 which we have termed uro-adherence factor B (uafB). UafB is a glycosylated serine-rich repeat protein that is expressed on the surface of S. saprophyticus MS1146. UafB also functions as a major cell surface hydrophobicity factor. To characterize the role of UafB we generated an isogenic uafB mutant in S. saprophyticus MS1146 by interruption with a group II intron. The uafB mutant had a significantly reduced ability to bind to fibronectin and fibrinogen. Furthermore, we show that a recombinant protein containing the putative binding domain of UafB binds specifically to fibronectin and fibrinogen. UafB was not involved in adhesion in a mouse model of UTI; however, we observed a striking UafB-mediated adhesion phenotype to human uroepithelial cells. We have also identified genes homologous to uafB in other staphylococci which, like uafB, appear to be located on transposable elements. Thus, our data indicate that UafB is a novel adhesin of S. saprophyticus that contributes to cell surface hydrophobicity, mediates adhesion to fibronectin and fibrinogen, and exhibits tropism for human uroepithelial cells.