944 resultados para Performance optimale


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gazelles, or very rapidly growing firms, are important because they contribute disproportionately to economic growth. There is a concern that some of these firms pursue growth too aggressively resulting in lower subsequent performance. We investigate the relationship between growth and subsequent profitability for gazelle firms, and how this is moderated by firm strategy. Previous empirical research regarding the growth-profitability relationship for firms in general is rather inconclusive, with only one study specifically investigating gazelle firms. Likewise, there are theoretical arguments both for and against growth leading to profitability that equally apply to gazelle firms. Further, while contingency theory might suggest the relationship depends on the firm’s strategy, earlier studies have not investigated this relationship. We address these questions using longitudinal data (seven years) for a sample of 964 Danish Gazelle firms. Our study finds a clear positive relationship between growth and subsequent profitability among gazelle firms. Moreover, this relationship is stronger for firms pursuing a broad market strategy rather than a focus or niche strategy. An important managerial implication is that the growth strategy should be clearly integrated with the general strategic orientation of the firm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire safety of light gauge cold-formed steel frame (LSF) wall systems is significant to the build-ing design. Gypsum plasterboard is widely used as a fire safety material in the building industry. It contains gypsum (CaSO4.2H2O), Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Recently a new composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of LSF walls. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties of gypsum plaster-board, insulation materials and steel were used. The developed models were then validated by comparing their results with fire test results. This paper presents the details of the developed finite element models of non-load bearing LSF wall panels and the thermal analysis results. It has shown that finite element models can be used to simulate the thermal behaviour of LSF walls with varying configurations of insulations and plasterboards. The results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection. Effects of real fire conditions are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Academic libraries around the world often have to justify high maintenance costs. High maintenance costs of university libraries are often justified by the belief that regular use of an academic library improves the grades of students. However, this is a difficult statement to support, therefore demonstrating the link between library use and student outcomes is critical to ensuring that library investment continues. Questionnaires and interviews were conducted and the findings were analysed to derive users’ perceptions. The findings revealed interesting results regarding how users make use of the library and how users feel the library improves their personal performance. Overall, the perception of all three groups of the academic libraries within Kuwait is positive, however many users are dissatisfied with some academic library services. Students answered positively regarding their grades and use of the academic library. Academics and administrators were generally positive and offered an experienced insight into the quality of the library. This study offers the first perception based results in Kuwait. The inclusion of administrators’ perceptions is also novel in terms of the Gulf States. A refined model was designed based on the overall findings within the study. This model can be applied to any academic library, regardless of size or collection type. Based on findings, the researcher recommends taking the following points into consideration in order to improve library services and facilities for all users. Improvements could be made in the structure of library training courses and academic libraries should be providing flexible spaces for individuals and group study as well as social activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of a repair work for the restoration of spalled reinforced concrete (r.c.) structures depends to a great extent, on their ability to restore the structural integrity of the r.c. element, to restore its serviceability and to protect the reinforcements from further deterioration. This paper presents results of a study concocted to investigate the structural performance of eight spalled r.c. beams repaired using two advanced repair materials in various zones for comparison purposes, namely a free flowing self compacting mortar (FFSCM) and a polymer Modified cementitious mortar (PMCM). The repair technique adopted was that for the repair of spalled concrete in which the bond between the concrete and steel was completely lost due to reinforcement corrosion or the effect of fire or impact. The beams used for the experiment were first cast, then hacked at various zones before they were repaired except for the control beam. The beam specimens were then loaded to failure under four point loadings. The structural response of each beam was evaluated in terms of first crack load, cracking behavior, crack pattern, deflection, variation of strains in the concrete and steel, collapse load and the modes of failure. The results of the test showed that, the repair materials applied on the various zones of the beams were able to restore more than 100% of the beams’ capacity and that FFSCM gave a better overall performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the impact of message strategy on advertising performance will be in examined in a business-to-business (B2B) context. From a theoretical standpoint, the study will explore differences in message type between symbolic and literal approaches in B2B advertisements. While there has been much discussion on the effect of symbolism, (eg. metaphors, abstract images and figurative language), an empirically-tested scale that measures the degree of symbolism has not been developed. This research project focuses on development of a methodological scale to accurately test the difference in the direction of message appeals. Thus, insights in the role of message strategy in the B2B adoption process are anticipated with contributions in future consumer and business advertising research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New substation automation applications, such as sampled value process buses and synchrophasors, require sampling accuracy of 1 µs or better. The Precision Time Protocol (PTP), IEEE Std 1588, achieves this level of performance and integrates well into Ethernet based substation networks. This paper takes a systematic approach to the performance evaluation of commercially available PTP devices (grandmaster, slave, transparent and boundary clocks) from a variety of manufacturers. The ``error budget'' is set by the performance requirements of each application. The ``expenditure'' of this error budget by each component is valuable information for a system designer. The component information is used to design a synchronization system that meets the overall functional requirements. The quantitative performance data presented shows that this testing is effective and informative. Results from testing PTP performance in the presence of sampled value process bus traffic demonstrate the benefit of a ``bottom up'' component testing approach combined with ``top down'' system verification tests. A test method that uses a precision Ethernet capture card, rather than dedicated PTP test sets, to determine the Correction Field Error of transparent clocks is presented. This test is particularly relevant for highly loaded Ethernet networks with stringent timing requirements. The methods presented can be used for development purposes by manufacturers, or by system integrators for acceptance testing. A sampled value process bus was used as the test application for the systematic approach described in this paper. The test approach was applied, components were selected, and the system performance verified to meet the application's requirements. Systematic testing, as presented in this paper, is applicable to a range of industries that use, rather than develop, PTP for time transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior studies linking performance management systems (PMS) and organisational justice have examined how PMS influence procedural fairness. Our investigation differs from these studies. First, it examines fairness as an antecedent (instead of as a consequence) of the choice of PMS. Second, instead of conceptualising organisational fairness as procedural fairness, it relies on the impression management interpretation of organisational fairness. Hence, the study investigates how the need of senior managers to cultivate an impression of being fair is related to the choice of PMS systems and employee outcomes. Based on a sample of 276 employees, the results indicate that the need of senior management to cultivate an impression of being fair is associated with employee performance. They also indicate that a substantial component of these effects is indirect through the choice of comprehensive performance measures (CPM) and employee job satisfaction. These findings highlight the importance of organisational concern for workplace fairness as an antecedent of choice of CPM. From a theoretical perspective, the adoption of the impression management interpretation of organisational fairness contributes by providing new insights into the relationship between fairness and choice of PMS from a perspective that is different from those used in prior management accounting research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationships between business planning and performance have divided the entrepreneurship research community for decades (Brinckmann et al, 2010). One side of this debate is the assumption that business plans may lock the firm in a specific direction early on, impede the firm to adapt to the changing market conditions (Dencker et al., 2009) and eventually, cause escalation of commitments by introducing rigidity (Vesper, 1993). Conversely, feedback received from the production and presentation of business plans may also lead the firm to take corrective actions. However, the mechanisms underlying the relationships between changes in business ideas, business plans and the performance of nascent firms are still largely unknown. While too many business idea changes may confuse stakeholders, exhaust the firm’s resources and hinder the undergoing legitimization process, some flexibility during the early stages of the venture may be beneficial to cope with the uncertainties surrounding new venture creation (Knight, 1921; March, 1982; Stinchcombe, 1965; Weick, 1979). Previous research has emphasized adaptability and flexibility as key success factors through effectual logic and interaction with the market (Sarasvathy, 2001; 2007) or improvisation and trial-and-error (Miner et al, 2001). However, those studies did not specifically investigate the role of business planning. Our objective is to reconcile those seemingly opposing views (flexibility versus rigidity) by undertaking a more fine-grained analysis at the relationships between business planning and changes in business ideas on a large longitudinal sample of nascent firms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated performance and heart rate (HR) variability (HRV) over consecutive days of cycling with post-exercise cold water immersion (CWI) or passive recovery (PAS). In a crossover design, 11 cyclists completed two separate 3-day training blocks (120 min cycling per day, 66 maximal sprints, 9 min time trialling [TT]), followed by 2 days of recovery-based training. The cyclists recovered from each training session by standing in cold water (10 °C) or at room temperature (27 °C) for 5 min. Mean power for sprints, total TT work and HR were assessed during each session. Resting vagal-HRV (natural logarithm of square-root of mean squared differences of successive R-R intervals; ln rMSSD) was assessed after exercise, after the recovery intervention, during sleep and upon waking. CWI allowed better maintenance of mean sprint power (between-trial difference [90 % confidence limits] +12.4 % [5.9; 18.9]), cadence (+2.0 % [0.6; 3.5]), and mean HR during exercise (+1.6 % [0.0; 3.2]) compared with PAS. ln rMSSD immediately following CWI was higher (+144 % [92; 211]) compared with PAS. There was no difference between the trials in TT performance (-0.2 % [-3.5; 3.0]) or waking ln rMSSD (-1.2 % [-5.9; 3.4]). CWI helps to maintain sprint performance during consecutive days of training, whereas its effects on vagal-HRV vary over time and depend on prior exercise intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of hydrotherapy on time-trial performance and cardiac parasympathetic reactivation during recovery from intense training. On three occasions, 18 well-trained cyclists completed 60 min high-intensity cycling, followed 20 min later by one of three 10-min recovery interventions: passive rest (PAS), cold water immersion (CWI), or contrast water immersion (CWT). The cyclists then rested quietly for 160 min with R-R intervals and perceptions of recovery recorded every 30 min. Cardiac parasympathetic activity was evaluated using the natural logarithm of the square root of mean squared differences of successive R-R intervals (ln rMSSD). Finally, the cyclists completed a work-based cycling time trial. Effects were examined using magnitude-based inferences. Differences in time-trial performance between the three trials were trivial. Compared with PAS, general fatigue was very likely lower for CWI (difference [90% confidence limits; -12% (-18; -5)]) and CWT [-11% (-19; -2)]. Leg soreness was almost certainly lower following CWI [-22% (-30; -14)] and CWT [-27% (-37; -15)]. The change in mean ln rMSSD following the recovery interventions (ln rMSSD(Post-interv)) was almost certainly higher following CWI [16.0% (10.4; 23.2)] and very likely higher following CWT [12.5% (5.5; 20.0)] compared with PAS, and possibly higher following CWI [3.7% (-0.9; 8.4)] compared with CWT. The correlations between performance, ln rMSSD(Post-interv) and perceptions of recovery were unclear. A moderate correlation was observed between ln rMSSD(Post-interv) and leg soreness [r = -0.50 (-0.66; -0.29)]. Although the effects of CWI and CWT on performance were trivial, the beneficial effects on perceptions of recovery support the use of these recovery strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart antenna receiver and transmitter systems consist of multi-port arrays with an individual receiver channel (including ADC) and an individual transmitter channel (including DAC)at every of the M antenna ports, respectively. By means of digital beamforming, an unlimited number of simultaneous complex-valued vector radiation patterns with M-1 degrees of freedom can be formed. Applications of smart antennas in communication systems include space-division multiple access. If both stations of a communication link are equipped with smart antennas (multiple-input-multiple-output, MIMO). multiple independent channels can be formed in a "multi-path-rich" environment. In this article, it will be shown that under certain circumstances, the correlation between signals from adjacent ports of a dense array (M + ΔM elements) can be kept as low as the correlation between signals from adjacent ports of a conventional array (M elements and half-wavelength pacing). This attractive feature is attained by means of a novel approach which employs a RF decoupling network at the array ports in order to form new ports which are decoupled and associated with mutually orthogonal (de-correlated) radiation patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a notable shortage of empirical research directed at measuring the magnitude and direction of stress effects on performance in a controlled environment. One reason for this is the inherent difficulties in identifying and isolating direct performance measures for individuals. Additionally, most traditional work environments contain a multitude of exogenous factors impacting individual performance, but controlling for all such factors is generally unfeasible (omitted variable bias). Moreover, instead of asking individuals about their self-reported stress levels, we observe workers’ behaviour in situations that can be classified as stressful. For this reason, we have stepped outside the traditional workplace in an attempt to gain greater controllability of these factors using the sports environment as our experimental space. We empirically investigate the relationship between stress and performance, in an extreme pressure situation (football penalty kicks) in a winner take all sporting environment (FIFA World Cup and UEFA European Cup competitions). Specifically, we examine all the penalty shootouts between 1976 and 2008 covering in total 16 events. The results indicate that extreme stressors can have a positive or negative impact on individuals’ performance. On the other hand, more commonly experienced stressors do not affect professionals’ performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The onsite treatment of sewage and effluent disposal within the premises is widely prevalent in rural and urban fringe areas due to the general unavailability of reticulated wastewater collection systems. Despite the seemingly low technology of the systems, failure is common and in many cases leading to adverse public health and environmental consequences. Therefore it is important that careful consideration is given to the design and location of onsite sewage treatment systems. It requires an understanding of the factors that influence treatment performance. The use of subsurface effluent absorption systems is the most common form of effluent disposal for onsite sewage treatment and particularly for septic tanks. Additionally in the case of septic tanks, a subsurface disposal system is generally an integral component of the sewage treatment process. Therefore location specific factors will play a key role in this context. The project The primary aims of the research project are: • to relate treatment performance of onsite sewage treatment systems to soil conditions at site; • to identify important areas where there is currently a lack of relevant research knowledge and is in need of further investigation. These tasks were undertaken with the objective of facilitating the development of performance based planning and management strategies for onsite sewage treatment. The primary focus of the research project has been on septic tanks. Therefore by implication the investigation has been confined to subsurface soil absorption systems. The design and treatment processes taking place within the septic tank chamber itself did not form a part of the investigation. In the evaluation to be undertaken, the treatment performance of soil absorption systems will be related to the physico-chemical characteristics of the soil. Five broad categories of soil types have been considered for this purpose. The number of systems investigated was based on the proportionate area of urban development within the Brisbane region located on each soil types. In the initial phase of the investigation, though the majority of the systems evaluated were septic tanks, a small number of aerobic wastewater treatment systems (AWTS) were also included. This was primarily to compare the effluent quality of systems employing different generic treatment processes. It is important to note that the number of different types of systems investigated was relatively small. As such this does not permit a statistical analysis to be undertaken of the results obtained. This is an important issue considering the large number of parameters that can influence treatment performance and their wide variability. The report This report is the second in a series of three reports focussing on the performance evaluation of onsite treatment of sewage. The research project was initiated at the request of the Brisbane City Council. The work undertaken included site investigation and testing of sewage effluent and soil samples taken at distances of 1 and 3 m from the effluent disposal area. The project component discussed in the current report formed the basis for the more detailed investigation undertaken subsequently. The outcomes from the initial studies have been discussed, which enabled the identification of factors to be investigated further. Primarily, this report contains the results of the field monitoring program, the initial analysis undertaken and preliminary conclusions. Field study and outcomes Initially commencing with a list of 252 locations in 17 different suburbs, a total of 22 sites in 21 different locations were monitored. These sites were selected based on predetermined criteria. To obtain house owner agreement to participate in the monitoring study was not an easy task. Six of these sites had to be abandoned subsequently due to various reasons. The remaining sites included eight septic systems with subsurface effluent disposal and treating blackwater or combined black and greywater, two sites treating greywater only and six sites with AWTS. In addition to collecting effluent and soil samples from each site, a detailed field investigation including a series of house owner interviews were also undertaken. Significant observations were made during the field investigations. In addition to site specific observations, the general observations include the following: • Most house owners are unaware of the need for regular maintenance. Sludge removal has not been undertaken in any of the septic tanks monitored. Even in the case of aerated wastewater treatment systems, the regular inspections by the supplier is confined only to the treatment system and does not include the effluent disposal system. This is not a satisfactory situation as the investigations revealed. • In the case of separate greywater systems, only one site had a suitably functioning disposal arrangement. The general practice is to employ a garden hose to siphon the greywater for use in surface irrigation of the garden. • In most sites, the soil profile showed significant lateral percolation of effluent. As such, the flow of effluent to surface water bodies is a distinct possibility. • The need to investigate the subsurface condition to a depth greater than what is required for the standard percolation test was clearly evident. On occasion, seemingly permeable soil was found to have an underlying impermeable soil layer or vice versa. The important outcomes from the testing program include the following: • Though effluent treatment is influenced by the physico-chemical characteristics of the soil, it was not possible to distinguish between the treatment performance of different soil types. This leads to the hypothesis that effluent renovation is significantly influenced by the combination of various physico-chemical parameters rather than single parameters. This would make the processes involved strongly site specific. • Generally the improvement in effluent quality appears to take place only within the initial 1 m of travel and without any appreciable improvement thereafter. This relates only to the degree of improvement obtained and does not imply that this quality is satisfactory. This calls into question the value of adopting setback distances from sensitive water bodies. • Use of AWTS for sewage treatment may provide effluent of higher quality suitable for surface disposal. However on the whole, after a 1-3 m of travel through the subsurface, it was not possible to distinguish any significant differences in quality between those originating from septic tanks and AWTS. • In comparison with effluent quality from a conventional wastewater treatment plant, most systems were found to perform satisfactorily with regards to Total Nitrogen. The success rate was much lower in the case of faecal coliforms. However it is important to note that five of the systems exhibited problems with regards to effluent disposal, resulting in surface flow. This could lead to possible contamination of surface water courses. • The ratio of TDS to EC is about 0.42 whilst the optimum recommended value for use of treated effluent for irrigation should be about 0.64. This would mean a higher salt content in the effluent than what is advisable for use in irrigation. A consequence of this would be the accumulation of salts to a concentration harmful to crops or the landscape unless adequate leaching is present. These relatively high EC values are present even in the case of AWTS where surface irrigation of effluent is being undertaken. However it is important to note that this is not an artefact of the treatment process but rather an indication of the quality of the wastewater generated in the household. This clearly indicates the need for further research to evaluate the suitability of various soil types for the surface irrigation of effluent where the TDS/EC ratio is less than 0.64. • Effluent percolating through the subsurface absorption field may travel in the form of dilute pulses. As such the effluent will move through the soil profile forming fronts of elevated parameter levels. • The downward flow of effluent and leaching of the soil profile is evident in the case of podsolic, lithosol and kransozem soils. Lateral flow of effluent is evident in the case of prairie soils. Gleyed podsolic soils indicate poor drainage and ponding of effluent. In the current phase of the research project, a number of chemical indicators such as EC, pH and chloride concentration were employed as indicators to investigate the extent of effluent flow and to understand how soil renovates effluent. The soil profile, especially texture, structure and moisture regime was examined more in an engineering sense to determine the effect of movement of water into and through the soil. However it is not only the physical characteristics, but the chemical characteristics of the soil also play a key role in the effluent renovation process. Therefore in order to understand the complex processes taking place in a subsurface effluent disposal area, it is important that the identified influential parameters are evaluated using soil chemical concepts. Consequently the primary focus of the next phase of the research project will be to identify linkages between various important parameters. The research thus envisaged will help to develop robust criteria for evaluating the performance of subsurface disposal systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The onsite treatment of sewage and effluent disposal is widely prevalent in rural and urban fringe areas due to the general unavailability of reticulated wastewater collection systems. Despite the low technology of the systems, failure is common and in many cases leading to adverse public health and environmental consequences. It is important therefore that careful consideration is given to the design and location of onsite sewage treatment systems. This requires an understanding of the factors that influence treatment performance. The use of subsurface absorption systems is the most common form of effluent disposal for onsite sewage treatment, particularly for septic tanks. Also, in the case of septic tanks, a subsurface disposal system is generally an integral component of the sewage treatment process. Site specific factors play a key role in the onsite treatment of sewage. The project The primary aims of the research project were: • to relate treatment performance of onsite sewage treatment systems to soil conditions at site; • to evaluate current research relating to onsite sewage treatment; and, • to identify key issues where currently there is a lack of relevant research. These tasks were undertaken with the objective of facilitating the development of performance based planning and management strategies for onsite sewage treatment. The primary focus of this research project has been on septic tanks. By implication, the investigation has been confined to subsurface soil absorption systems. The design and treatment processes taking place within the septic tank chamber itself did not form a part of the investigation. Five broad categories of soil types prevalent in the Brisbane region have been considered in this project. The number of systems investigated was based on the proportionate area of urban development within the Brisbane region located on each of the different soil types. In the initial phase of the investigation, the majority of the systems evaluated were septic tanks. However, a small number of aerobic wastewater treatment systems (AWTS) were also included. The primary aim was to compare the effluent quality of systems employing different generic treatment processes. It is important to note that the number of each different type of system investigated was relatively small. Consequently, this does not permit a statistical analysis to be undertaken of the results obtained for comparing different systems. This is an important issue considering the large number of soil physico-chemical parameters and landscape factors that can influence treatment performance and their wide variability. The report This report is the last in a series of three reports focussing on the performance evaluation of onsite treatment of sewage. The research project was initiated at the request of the Brisbane City Council. The project component discussed in the current report outlines the detailed soil investigations undertaken at a selected number of sites. In the initial field sampling, a number of soil chemical properties were assessed as indicators to investigate the extent of effluent flow and to help understand what soil factors renovate the applied effluent. The soil profile attributes, especially texture, structure and moisture regime were examined more in an engineering sense to determine the effect of movement of water into and through the soil. It is important to note that it is not only the physical characteristics, but also the chemical characteristics of the soil as well as landscape factors play a key role in the effluent renovation process. In order to understand the complex processes taking place in a subsurface effluent disposal area, influential parameters were identified using soil chemical concepts. Accordingly, the primary focus of this final phase of the research project was to identify linkages between various soil chemical parameters and landscape patterns and their contribution to the effluent renovation process. The research outcomes will contribute to the development of robust criteria for evaluating the performance of subsurface effluent disposal systems. The outcomes The key findings from the soil investigations undertaken are: • Effluent renovation is primarily undertaken by a combination of various soil physico-chemical parameters and landscape factors, thereby making the effluent renovation processes strongly site dependent. • Decisions regarding site suitability for effluent disposal should not be based purely in terms of the soil type. A number of other factors such as the site location in the catena, the drainage characteristics and other physical and chemical characteristics, also exert a strong influence on site suitability. • Sites, which are difficult to characterise in terms of suitability for effluent disposal, will require a detailed soil physical and chemical analysis to be undertaken to a minimum depth of at least 1.2 m. • The Ca:Mg ratio and Exchangeable Sodium Percentage are important parameters in soil suitability assessment. A Ca:Mg ratio of less than 0.5 would generally indicate a high ESP. This in turn would mean that Na and possibly Mg are the dominant exchangeable cations, leading to probable clay dispersion. • A Ca:Mg ratio greater than 0.5 would generally indicate a low ESP in the profile, which in turn indicates increased soil stability. • In higher clay percentage soils, low ESP can have a significant effect. • The presence of high exchangeable Na can be counteracted by the presence of swelling clays, and an exchange complex co-dominated by exchangeable Ca and exchangeable Mg. This aids absorption of cations at depth, thereby reducing the likelihood of dispersion. • Salt is continually added to the soil by the effluent and problems may arise if the added salts accumulate to a concentration that is harmful to the soil structure. Under such conditions, good drainage is essential in order to allow continuous movement of water and salt through the profile. Therefore, for a site to be sustainable, it would have a maximum application rate of effluent. This would be dependent on subsurface characteristics and the surface area available for effluent disposal. • The dosing regime for effluent disposal can play a significant role in the prevention of salt accumulation in the case of poorly draining sites. Though intermittent dosing was not considered satisfactory for the removal of the clogging mat layer, it has positive attributes in the context of removal of accumulated salts in the soil.