480 resultados para Millennium (Computer system)
Resumo:
This thesis addresses voltage violation problem, the most critical issue associated with high level penetration of photovoltaic (PV) in electricity distribution network. A coordinated control algorithm using the reactive power from PV inverter and integrated battery energy storage has been developed and investigated in different network scenarios in the thesis. Probable variations associated with solar generation, end-user participation and network parameters are also considered. Furthermore, a unified data model and well-defined communication protocol to ensure the smooth coordination between all the components during the operation of the algorithm is described. Finally this thesis incorporated the uncertainties of solar generation using probabilistic load flow analysis.
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating noncritical in-car systems. Under such conditions, however, speech recognition accuracy degrades significantly, and techniques such as speech enhancement are required to improve these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech enhancement algorithms based on recognized state sequences rather than traditional signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks typically require calibration utterances to generate optimized enhancement parameters that are used for all subsequent utterances. Under such a scheme, suboptimal recognition performance occurs in noise conditions that are significantly different from that present during the calibration session – a serious problem in rapidly changing noise environments out on the open road. In this chapter, we propose a dialog-based design that allows regular optimization iterations in order to track the ever-changing noise conditions. Experiments using Mel-filterbank noise subtraction (MFNS) are performed to determine the optimization requirements for vehicular environments and show that minimal optimization is required to improve speech recognition, avoid over-optimization, and ultimately assist with semireal-time operation. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session only.
Resumo:
Re-supplying loads on outage through cross-connect from adjacent feeders in a distribution system may cause voltage drop and hence require load shedding. However, the surplus PV generated in some of the LV feeders can prevent load shedding, and improve reliability. In order to measure these effects, this paper proposes the application of Direct Load Flow method[1] in reliability evaluation of distribution systems with PV units. As part of this study, seasonal impacts on load consumption together with surplus PV output power injection to higher voltage networks are also considered. New indices are proposed to measure yearly expected energy export, from LV to MV and from MV to higher voltage network.
Resumo:
Battery energy storage systems (BESS) are becoming feasible to provide system frequency support due to recent developments in technologies and plummeting cost. Adequate response of these devices becomes critical as the penetration of the renewable energy sources increases in the power system. This paper proposes effective use of BESS to improve system frequency performance. The optimal capacity and the operation scheme of BESS for frequency regulation are obtained using two staged optimization process. Furthermore, the effectiveness of BESS for improving the system frequency response is verified using dynamic simulations.
Resumo:
Traceability system in the food supply chain is becoming more necessary. RFID and EPCglobal Network Standards are emerging technologies that bring new opportunities to develop the high performance traceability system. This research proposes the analysis, design, and development of the RFID and EPCglobal Network Standards based traceability system that adheres to the requirements of global food traceability in terms of completeness of traceability information. The additional components, including lot management system and electronic transaction management system, encourage the traditional system in order to fulfill the missing information. The proposed system was developed and applied in a rice supply chain. Results from experimentation showed that the additional components can significantly improve the completeness of traceability information. The collaboration between EPCglobal Network Standards and electronic transaction management system can improve the performances in RFID operations.
Resumo:
We present a new approach for creating and implementing an ad-hoc underwater acoustic sensor network based on connecting a small processor to the serial port of a commercial CDMA acoustic modem. The processor acts as a "node controller" providing the networking layer that the modems lack. The ad-hoc networking protocol is based on a modified dynamic source routing (DSR) approach and can be configured for maximising information throughput or minimising energy expenditure. The system was developed in simulation and then evaluated during field trials using a 10 node deployment. Experimental results show reliable multi-hop networking under a variety of network configurations, with the added ability to determine internode ranges to within 1.5 m for localisation.
Resumo:
This book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems.
Resumo:
This chapter discussed the various modes of operation of the Doubly Fed Induction Generator (DFIG) based wind farm system. The impact of a auxiliary damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using Bacteria Foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system under Super/Sub-synchronous speed of operation. The robustness issue of the damping controller is also investigated.
Resumo:
Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.
Resumo:
This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.
Resumo:
The dynamic, chaotic, intimate and social nature of family life presents many challenges when designing interactive systems in the household space. This paper presents findings from a whole-of-family approach to studying the use of an energy awareness and management system called “Ecosphere”. Using a novel methodology of inviting 12 families to create their own self-authored videos documenting their energy use, we report on the family dynamics and nuances of family life that shape and affect this use. Our findings suggest that the momentum of existing family dynamics in many cases obstructs behaviour change and renders some family members unaware of energy consumption despite the presence of an energy monitor display in the house. The implication for eco-feedback design is that it needs to recognise and respond to the kinds of family relations into which the system is embedded. In response, we suggest alternative ways of sharing energy-related information among families and incentivising engagement among teenagers.
Resumo:
Available industrial energy meters offer high accuracy and reliability, but are typically expensive and low-bandwidth, making them poorly suited to multi-sensor data acquisition schemes and power quality analysis. An alternative measurement system is proposed in this paper that is highly modular, extensible and compact. To minimise cost, the device makes use of planar coreless PCB transformers to provide galvanic isolation for both power and data. Samples from multiple acquisition devices may be concentrated by a central processor before integration with existing host control systems. This paper focusses on the practical design and implementation of planar coreless PCB transformers to facilitate the module's isolated power, clock and data signal transfer. Calculations necessary to design coreless PCB transformers, and circuits designed for the transformer's practical application in the measurement module are presented. The designed transformer and each application circuit have been experimentally verified, with test data and conclusions made applicable to coreless PCB transformers in general.
Resumo:
In this paper we present for the first time a complete symbolic navigation system that performs goal-directed exploration to unfamiliar environments on a physical robot. We introduce a novel construct called the abstract map to link provided symbolic spatial information with observed symbolic information and actual places in the real world. Symbolic information is observed using a text recognition system that has been developed specifically for the application of reading door labels. In the study described in this paper, the robot was provided with a floor plan and a destination. The destination was specified by a room number, used both in the floor plan and on the door to the room. The robot autonomously navigated to the destination using its text recognition, abstract map, mapping, and path planning systems. The robot used the symbolic navigation system to determine an efficient path to the destination, and reached the goal in two different real-world environments. Simulation results show that the system reduces the time required to navigate to a goal when compared to random exploration.