557 resultados para LINEAR CURRENT SCANNING
Resumo:
Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia.
Resumo:
Research problem: Overfitting and collinearity problems commonly exist in current construction cost estimation applications and obstruct researchers and practitioners in achieving better modelling results. Research objective and method: A hybrid approach of Akaike information criterion (AIC) stepwise regression and principal component regression (PCR) is proposed to help solve overfitting and collinearity problems. Utilization of this approach in linear regression is validated by comparing it with other commonly used approaches. The mean square error obtained by leave-one-out cross validation (MSELOOCV) is used in model selection in deciding predictive variables.
Resumo:
Significance Reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and peroxynitrite are generated ubiquitously by all mammalian cells and have been understood for many decades as inflicting cell damage and as causing cancer by oxidation and nitration of macromolecules, including DNA, RNA, proteins, and lipids. Recent Advances A current concept suggests that ROS can also promote cell signaling pathways triggered by growth factors and transcription factors that ultimately regulate cell proliferation, differentiation, and apoptosis, all of which are important hallmarks of tumor cell proliferation and angiogenesis. Moreover, an emerging concept indicates that ROS regulate the functions of immune cells that infiltrate the tumor environment and stimulate angiogenesis, such as macrophages and specific regulatory T cells. Critical Issues In this article, we highlight that the NADPH oxidase family of ROS-generating enzymes are the key sources of ROS and, thus, play an important role in redox signaling within tumor, endothelial, and immune cells thereby promoting tumor angiogenesis. Future Directions Knowledge of these intricate ROS signaling pathways and identification of the culprit NADPH oxidases is likely to reveal novel therapeutic opportunities to prevent angiogenesis that occurs during cancer and which is responsible for the revascularization after current antiangiogenic treatment.
Resumo:
BACKGROUND: Over the past 10 years, the use of saliva as a diagnostic fluid has gained attention and has become a translational research success story. Some of the current nanotechnologies have been demonstrated to have the analytical sensitivity required for the use of saliva as a diagnostic medium to detect and predict disease progression. However, these technologies have not yet been integrated into current clinical practice and work flow. CONTENT: As a diagnostic fluid, saliva offers advantages over serum because it can be collected noninvasively by individuals with modest training, and it offers a cost-effective approach for the screening of large populations. Gland-specific saliva can also be used for diagnosis of pathology specific to one of the major salivary glands. There is minimal risk of contracting infections during saliva collection, and saliva can be used in clinically challenging situations, such as obtaining samples from children or handicapped or anxious patients, in whom blood sampling could be a difficult act to perform. In this review we highlight the production of and secretion of saliva, the salivary proteome, transportation of biomolecules from blood capillaries to salivary glands, and the diagnostic potential of saliva for use in detection of cardiovascular disease and oral and breast cancers. We also highlight the barriers to application of saliva testing and its advancement in clinical settings. SUMMARY: Saliva has the potential to become a first-line diagnostic sample of choice owing to the advancements in detection technologies coupled with combinations of biomolecules with clinical relevance. (C) 2011 American Association for Clinical Chemistry
Resumo:
Human saliva harbours proteins of clinical relevance and about 30% of blood proteins are also present in saliva. This highlights that saliva can be used for clinical applications just as urine or blood. However, the translation of salivary biomarker discoveries into clinical settings is hampered by the dynamics and complexity of the salivary proteome. This review focuses on the current status of technological developments and achievements relating to approaches for unravelling the human salivary proteome. We discuss the dynamics of the salivary proteome, as well as the importance of sample preparation and processing techniques and their influence on downstream protein applications; post-translational modifications of salivary proteome and protein: protein interactions. In addition, we describe possible enrichment strategies for discerning post-translational modifications of salivary proteins, the potential utility of selected-reaction-monitoring techniques for biomarker discovery and validation, limitations to proteomics and the biomarker challenge and future perspectives. In summary, we provide recommendations for practical saliva sampling, processing and storage conditions to increase the quality of future studies in an emerging field of saliva clinical proteomics. We propose that the advent of technologies allowing sensitive and high throughput proteome-wide analyses, coupled to well-controlled study design, will allow saliva to enter clinical practice as an alternative to blood-based methods due to its simplistic nature of sampling, non-invasiveness, easy of collection and multiple collections by untrained professionals and cost-effective advantages.
Resumo:
Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ~0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ~4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1).
Resumo:
Deoxyribonucleic acid (DNA) extraction has considerably evolved since it was initially performed back in 1869. It is the first step required for many of the available downstream applications used in the field of molecular biology. Whole blood samples are one of the main sources used to obtain DNA, and there are many different protocols available to perform nucleic acid extraction on such samples. These methods vary from very basic manual protocols to more sophisticated methods included in automated DNA extraction protocols. Based on the wide range of available options, it would be ideal to determine the ones that perform best in terms of cost-effectiveness and time efficiency. We have reviewed DNA extraction history and the most commonly used methods for DNA extraction from whole blood samples, highlighting their individual advantages and disadvantages. We also searched current scientific literature to find studies comparing different nucleic acid extraction methods, to determine the best available choice. Based on our research, we have determined that there is not enough scientific evidence to support one particular DNA extraction method from whole blood samples. Choosing a suitable method is still a process that requires consideration of many different factors, and more research is needed to validate choices made at facilities around the world.