569 resultados para Dim Target Detection
Resumo:
The Escherichia coli mu operon was subcloned into a pKK233-2 vector containing rat glutathione S-transferase (GST) 5-5 cDNA and the plasmid thus obtained was introduced into Salmonella typhimurium TA1535. The newly developed strain S.typhimurium NM5004, was found to have 52-fold greater GST activity than the original umu strain S.typhimurium TA1535/pSK1002. We compared sensitivities of these two tester strains, NM5004 and TA1535/ pSK1002, for induction of umuC gene expression with several dihaloalkanes which are activated or inactivated by GST 5-5 activity. The induction of umuC gene expression by these chemicals was monitored by measuring the cellular P-galactosidase activity produced by umuC'lacZ fusion gene in these two tester strains. Ethylene dibromide, 1-bromo-2-chloroethane, 1,2-dichloroethane, and methylene dichloride induced umuC gene expression more strongly in the NM5004 strain than the original strain, 4-Nitroquinoline 1-oxide and N-methyl-N'-nitro-N-nitrosoguanidine were found to induce umuC gene expression to similar extents in both strains. In the case of 1-nitropyrene and 2-nitrofluorene, however, NM5004 strain showed weaker umuC gene expression responses than the original TA1535/ pSK1002 strain, 1,2-Epoxy-3-(4'-nitrophenoxy)propane, a known substrate for GST 5-5, was found to inhibit umuC induction caused by 1-bromo-2-chloroethane. These results indicate that this new tester NM5004 strain expressing a mammalian GST theta class enzyme may be useful for studies of environmental chemicals proposed to be activated or inactivated by GST activity.
Resumo:
Reactive oxygen species are generated during ischaemia-reperfusion of tissue. Oxidation of thymidine by hydroxyl radicals (HO) leads to the formation of 5,6-dihydroxy-5,6-dihydrothymidine (thymidine glycol). Thymidine glycol is excreted in urine and can be used as biomarker of oxidative DNA damage. Time dependent changes in urinary excretion rates of thymidine glycol were determined in six patients after kidney transplantation and in six healthy controls. A new analytical method was developed involving affinity chromatography and subsequent reverse-phase high-performance liquid chromatography (RP-HPLC) with a post-column chemical reaction detector and endpoint fluorescence detection. The detection limit of this fluorimetric assay was 1.6 ng thymidine glycol per ml urine, which corresponds to about half of the physiological excretion level in healthy control persons. After kidney transplantation the urinary excretion rate of thymidine glycol increased gradually reaching a maximum around 48 h. The excretion rate remained elevated until the end of the observation period of 10 days. Severe proteinuria with an excretion rate of up to 7.2 g of total protein per mmol creatinine was also observed immediately after transplantation and declined within the first 24 h of allograft function (0.35 + 0.26 g/mmol creatinine). The protein excretion pattern, based on separation of urinary proteins on sodium dodecyl sulphate-polyacrylamide gel electrophorosis (SDS-PAGE), as well as excretion of individual biomarker proteins, indicated nonselective glomerular and tubular damage. The increased excretion of thymidine glycol after kidney transplantation may be explained by ischaemia-reperfusion induced oxidative DNA damage of the transplanted kidney.
Resumo:
Glutathione transferase (GST) GSTT1-1 is involved in the biotransformation of several chemicals widely used in industry, such as butadiene and dichloro methane DCM. The polymorphic hGSTT1-1 may well play a role in the development of kidney tumours after high and long-term occupational exposure against trichloroethylene. Although several studies have investigated the association of this polymorphism with malignant diseases little is known about its enzyme activity in potential extrahepatic target tissues. The known theta-specific substrates methyl chloride (MC) dichloromethane and 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) were used to assay GSTT1-1 activity in liver and kidney of rats, mice, hamsters and humans differentiating the three phenotypes (non-conjugators, low conjugators, high conjugators) seen in humans. In addition GSTT1-1 activity towards MC and DCM was determined in human erythrocytes. No GSTT1-1 activity was found in any tissue of non-conjugators (NC). In all organs high conjugators (HC) showed twofold higher activity towards MC and DCM than low conjugators (LC). The activity in human samples towards EPNP was too close to the detection limit to differentiate between the three conjugator phenotypes. GSTT1-1 activity towards MC was two to seven-times higher in liver cytosol than in kidney cytosol. The relation for MC between species was identical in both organs: mouse > HC > rat > LC > hamster > NC. In rats, mice and hamsters GSTT1-1 activity in liver cytosol towards DCM was also two to seven-times higher than in the kidney cytosol. In humans this activity was twice as high in kidney cytosol than in liver cytosol. The relation between species was mouse > rat > HC > LC > hamster > NC for liver, but mouse > HC > LC/rat > hamster/NC for kidney cytosol. The importance to heed the specific environment at potential target sites in risk assessment is emphasized by these results.
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand the causal factors of these accidents, a video analytics application is being developed to automatically detect near-miss incidents using forward facing videos from trains. As near-miss events occur more frequently than collisions, by detecting these occurrences there will be more safety data available for analysis. The application that is being developed will improve the objectivity of near-miss reporting by providing quantitative data about the position of vehicles at level crossings through the automatic analysis of video footage. In this paper we present a novel method for detecting near-miss occurrences at railway level crossings from video data of trains. Our system detects and localizes vehicles at railway level crossings. It also detects the position of railways to calculate the distance of the detected vehicles to the railway centerline. The system logs the information about the position of the vehicles and railway centerline into a database for further analysis by the safety data recording and analysis system, to determine whether or not the event is a near-miss. We present preliminary results of our system on a dataset of videos taken from a train that passed through 14 railway level crossings. We demonstrate the robustness of our system by showing the results of our system on day and night videos.
Resumo:
Despite the very substantial body of primary sources and secondary literature on Australia’s much-litigated statutory provisions proscribing misleading or deceptive conduct, the courts have provided little in the way of assistance about how to establish the knowledge base of the target audience at whom the public statement was directed. The purpose of this case note is to compare and contrast two recent decisions of the High Court of Australia that highlight the difficulties faced by applicants in attempting to establish a contravention of the relevant legislation where conduct is directed at a segment of the public or the public as a whole.
Resumo:
Background Situational driving factors, including fatigue, distraction, inattention and monotony, are recognised killers in Australia, contributing to an estimated 40% of fatal crashes and 34% of all crashes . More often than not the main contributing factor is identified as fatigue, yet poor driving performance has been found to emerge early in monotonous conditions, independent of fatigue symptoms and time on task. This early emergence suggests an important role for monotony. However, much road safety research suggests that monotony is solely a task characteristic that directly causes fatigue and associated symptoms and there remains an absence of consistent evidence explaining the relationship. Objectives We report an experimental study designed to disentangle the characteristics and effects of monotony from those associated with fatigue. Specifically, we examined whether poor driving performance associated with hypovigilance emerges as a consequence of monotony, independent of fatigue. We also examined whether monotony is a multidimensional construct, determined by environmental characteristics and/or task demands that independently moderate sustained attention and associated driving performance. Method Using a driving simulator, participants completed four, 40 minute driving scenarios. The scenarios varied in the degree of monotony as determined by the degree of variation in road design (e.g., straight roads vs. curves) and/or road side scenery. Fatigue, as well as a number of other factors known to moderate vigilance and driving performance, was controlled for. To track changes across time, driving performance was assessed in five minute time periods using a range of behavioural, subjective and physiological measures, including steering wheel movements, lane positioning, electroencephalograms, skin conductance, and oculomotor activity. Results Results indicate that driving performance is worse in monotonous driving conditions characterised by low variability in road design. Critically, performance decrements associated with monotony emerge very early, suggesting monotony effects operate independent of fatigue. Conclusion Monotony is a multi-dimensional construct where, in a driving context, roads containing low variability in design are monotonous and those high in variability are non-monotonous. Importantly, low variability in road side scenery does not appear to exacerbate monotony or associated poor performance. However, high variability in road side scenery can act as a distraction and impair sustained attention and poor performance when driving on monotonous roads. Furthermore, high sensation seekers seem to be more susceptible to distraction when driving on monotonous roads. Implications of our results for the relationship between monotony and fatigue, and the possible construct-specific detection methods in a road safety context, will be discussed.
Potential role of EPB41L3 (Protein 4.1B/Dal-1) as a target for treatment of advanced prostate cancer
Resumo:
Background: Loss of erythrocyte membrane protein band 4.1-like 3 (EPB41L3; aliases: protein 4.1B, differentially expressed in adenocarcinoma of the lung-1 (Dal-1)) expression has been implicated in tumor progression. Objective: To evaluate literature describing the role of EPB41L3 in tumorigenesis and metastasis, and to consider whether targeting this gene would be useful in the treatment of prostate cancer. Methods: A literature review of studies describing EPB41L3 and its aliases was conducted. Online databases (NCBI, SwissProt) were also interrogated to collect further data. Results/conclusion: A growing body of evidence supports a role for loss of EPB41L3 in tumor progression, including in prostate cancer. Therapeutic strategies that could be harnessed to upregulate EPB41L3 gene expression in prostate cancer cells are currently being developed.
Resumo:
Introduction Novel imaging techniques for prostate cancer (PCa) are required to improve staging and real-time assessment of therapeutic response. We performed preclinical evaluation of newly-developed, biocompatible magnetic nanoparticles (MNPs) conjugated with J591, an antibody specific for prostate specific membrane antigen (PSMA), to enhance magnetic resonance imaging (MRI) of PCa. PSMA is expressed on ∼90% of PCa, including those that are castrate-resistant, rendering it as a rational target for PCa imaging. Materials and Methods The specificity of J591 for PSMA was confirmed by flow cytometric analysis of several PCa cell lines of known PSMA status. MNPs were prepared, engineered to the appropriate size, labeled with DiR fluorophore, and their toxicity to a panel of PC cells was assessed by in vitro Alamar Blue assay. Immunohistochemistry, fluorescence microscopy and Prussian Blue staining (iron uptake) were used to evaluate PSMA specificity of J591-MNP conjugates. In vivo MRI studies (16.4T MRI system) were performed using live immunodeficient mice bearing orthotopic LNCaP xenografts and injected intravenously with J591-MNPs or MNPs alone. Results MNPs were non-toxic to PCa cells. J591-MNP conjugates showed no compromise in specificity of binding to PSMA+ cells and showed enhanced iron uptake compared with MNPs alone. In vivo, tumour targeting (significant MR image contrast) was evident in mice injected with J591-MNPs, but not MNPs alone. Resected tumours from targeted mice had an accumulation of MNPs, not seen in normal control prostate. Conclusions Application of PSMA-targeting MNPs into conventional MRI has potential to enhance PCa detection and localization in real-time, improving patient management.
Resumo:
Due to the popularity of security cameras in public places, it is of interest to design an intelligent system that can efficiently detect events automatically. This paper proposes a novel algorithm for multi-person event detection. To ensure greater than real-time performance, features are extracted directly from compressed MPEG video. A novel histogram-based feature descriptor that captures the angles between extracted particle trajectories is proposed, which allows us to capture motion patterns of multi-person events in the video. To alleviate the need for fine-grained annotation, we propose the use of Labelled Latent Dirichlet Allocation, a “weakly supervised” method that allows the use of coarse temporal annotations which are much simpler to obtain. This novel system is able to run at approximately ten times real-time, while preserving state-of-theart detection performance for multi-person events on a 100-hour real-world surveillance dataset (TRECVid SED).
Resumo:
Missoni is a luxury Italian knitwear brand that partnered with Target in September 2011 releasing a large, one off, mass-market collection that ranged from apparel to home wares. The collaboration received extensive media coverage and was consequently extremely sought after. The online sales site crashed within hours of opening while shelves were cleared in stores minutes after trading began. Within hours more than 40000 items from the collection were posted for sale online at greatly inflated prices. Evaluation of the case study revealed that sales of the Missoni collection increased following the collaboration and the value of the publicity generated at estimated US$100 million. The lack of available stock, despite the enormous hype created, reinforced Missoni’s luxury image. Missoni was able to gain massive awareness of the brand despite not employing any of its own communication channels in the promotion of the collaboration. However the co-branded collaboration was distinctively Missoni, potentially inciting comparison and confusion with the signature line. Nevertheless, this study shows that co-branding strategies can offer a viable opportunity for luxury brands to increase their market share, while they maintain their market position.
Resumo:
Purpose: Older adults have increased visual impairment, including refractive blur from presbyopic multifocal spectacle corrections, and are less able to extract visual information from the environment to plan and execute appropriate stepping actions; these factors may collectively contribute to their higher risk of falls. The aim of this study was to examine the effect of refractive blur and target visibility on the stepping accuracy and visuomotor stepping strategies of older adults during a precision stepping task. Methods: Ten healthy, visually normal older adults (mean age 69.4 ± 5.2 years) walked up and down a 20 m indoor corridor stepping onto selected high and low-contrast targets while viewing under three visual conditions: best-corrected vision, +2.00 DS and +3.00 DS blur; the order of blur conditions was randomised between participants. Stepping accuracy and gaze behaviours were recorded using an eyetracker and a secondary hand-held camera. Results: Older adults made significantly more stepping errors with increasing levels of blur, particularly exhibiting under-stepping (stepping more posteriorly) onto the targets (p<0.05), while visuomotor stepping strategies did not significantly alter. Stepping errors were also significantly greater for the low compared to the high contrast targets and differences in visuomotor stepping strategies were found, including increased duration of gaze and increased interval between gaze onset and initiation of the leg swing when stepping onto the low contrast targets. Conclusions: These findings highlight that stepping accuracy is reduced for low visibility targets, and for high levels of refractive blur at levels typically present in multifocal spectacle corrections, despite significant changes in some of the visuomotor stepping strategies. These findings highlight the importance of maximising the contrast of objects in the environment, and may help explain why older adults wearing multifocal spectacle corrections exhibit an increased risk of falling.
Resumo:
Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114 nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems.
Resumo:
Abnormal event detection has attracted a lot of attention in the computer vision research community during recent years due to the increased focus on automated surveillance systems to improve security in public places. Due to the scarcity of training data and the definition of an abnormality being dependent on context, abnormal event detection is generally formulated as a data-driven approach where activities are modeled in an unsupervised fashion during the training phase. In this work, we use a Gaussian mixture model (GMM) to cluster the activities during the training phase, and propose a Gaussian mixture model based Markov random field (GMM-MRF) to estimate the likelihood scores of new videos in the testing phase. Further-more, we propose two new features: optical acceleration, and the histogram of optical flow gradients; to detect the presence of any abnormal objects and speed violations in the scene. We show that our proposed method outperforms other state of the art abnormal event detection algorithms on publicly available UCSD dataset.