763 resultados para Composite models
Resumo:
Shoulder joint is a complex integration of soft and hard tissues. It plays an important role in performing daily activities and can be considered as a perfect compromise between mobility and stability. However, shoulder is vulnerable to complications such as dislocations and osteoarthritis. Finite element (FE) models have been developed to understand shoulder injury mechanisms, implications of disease on shoulder complex and in assessing the quality of shoulder implants. Further, although few, Finite element shoulder models have also been utilized to answer important clinical questions such as the difference between a normal and osteoarthritic shoulder joint. However, due to the absence of experimental validation, it is questionable whether the constitutive models applied in these FE models are adequate to represent mechanical behaviors of shoulder elements (Cartilages, Ligaments, Muscles etc), therefore the confidence of using current models in answering clinically relevant question. The main objective of this review is to critically evaluate the existing FE shoulder models that have been used to investigate clinical problems. Due concern is given to check the adequacy of representative constitutive models of shoulder elements in drawing clinically relevant conclusion. Suggestions have been given to improve the existing shoulder models by inclusion of adequate constitutive models for shoulder elements to confidently answer clinically relevant questions.
Resumo:
Determining the properties and integrity of subchondral bone in the developmental stages of osteoarthritis, especially in a form that can facilitate real-time characterization for diagnostic and decision-making purposes, is still a matter for research and development. This paper presents relationships between near infrared absorption spectra and properties of subchondral bone obtained from 3 models of osteoarthritic degeneration induced in laboratory rats via: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACL); and (iii) intra-articular injection of mono-ido-acetate (1 mg) (MIA), in the right knee joint, with 12 rats per model group (N = 36). After 8 weeks, the animals were sacrificed and knee joints were collected. A custom-made diffuse reflectance NIR probe of diameter 5 mm was placed on the tibial surface and spectral data were acquired from each specimen in the wavenumber range 4000–12 500 cm− 1. After spectral acquisition, micro computed tomography (micro-CT) was performed on the samples and subchondral bone parameters namely: bone volume (BV) and bone mineral density (BMD) were extracted from the micro-CT data. Statistical correlation was then conducted between these parameters and regions of the near infrared spectra using multivariate techniques including principal component analysis (PCA), discriminant analysis (DA), and partial least squares (PLS) regression. Statistically significant linear correlations were found between the near infrared absorption spectra and subchondral bone BMD (R2 = 98.84%) and BV (R2 = 97.87%). In conclusion, near infrared spectroscopic probing can be used to detect, qualify and quantify changes in the composition of the subchondral bone, and could potentially assist in distinguishing healthy from OA bone as demonstrated with our laboratory rat models.
Resumo:
Three dimensional cellular models that mimic disease are being increasingly investigated and have opened an exciting new research area into understanding pathomechanisms. The advantage of 3D in vitro disease models is that they allow systematic and in-depth studies of physiological and pathophysiological processes with less costs and ethical concerns that have arisen with animal models. The purpose of the 3D approach is to allow crosstalk between cells and microenvironment, and with cues from the microenvironment, cells can assemble their niche similar to in vivo conditions. The use of 3D models for mimicking disease processes such as cancer, osteoarthritis etc., is only emerging and allows multidisciplinary teams consisting of tissue engineers, biologist biomaterial scientists and clinicians to work closely together. While in vitro systems require rigorous testing before they can be considered as replicates of the in vivo model, major steps have been made, suggesting that they will become powerful tools for studying physiological and pathophysiological processes. This paper aims to summarize some of the existing 3D models and proposes a novel 3D model of the eye structures that are involved in the most common cause of blindness in the Western World, namely age-related macular degeneration (AMD).
Resumo:
Identifying the design features that impact construction is essential to developing cost effective and constructible designs. The similarity of building components is a critical design feature that affects method selection, productivity, and ultimately construction cost and schedule performance. However, there is limited understanding of what constitutes similarity in the design of building components and limited computer-based support to identify this feature in a building product model. This paper contributes a feature-based framework for representing and reasoning about component similarity that builds on ontological modelling, model-based reasoning and cluster analysis techniques. It describes the ontology we developed to characterize component similarity in terms of the component attributes, the direction, and the degree of variation. It also describes the generic reasoning process we formalized to identify component similarity in a standard product model based on practitioners' varied preferences. The generic reasoning process evaluates the geometric, topological, and symbolic similarities between components, creates groupings of similar components, and quantifies the degree of similarity. We implemented this reasoning process in a prototype cost estimating application, which creates and maintains cost estimates based on a building product model. Validation studies of the prototype system provide evidence that the framework is general and enables a more accurate and efficient cost estimating process.
Resumo:
Confusion exists as to the age of the Abor Volcanics of NE India. Some consider the unit to have been emplaced in the Early Permian, others the Early Eocene, a difference of ∼230 million years. The divergence in opinion is significant because fundamentally different models explaining the geotectonic evolution of India depend on the age designation of the unit. Paleomagnetic data reported here from several exposures in the type locality of the formation in the lower Siang Valley indicate that steep dipping primary magnetizations (mean = 72.7 ± 6.2°, equating to a paleo-latitude of 58.1°) are recorded in the formation. These are only consistent with the unit being of Permian age, possibly Artinskian based on a magnetostratigraphic argument. Plate tectonic models for this time consistently show the NE corner of the sub-continent >50°S; in the Early Eocene it was just north of the equator, which would have resulted in the unit recording shallow directions. The mean declination is counter-clockwise rotated by ∼94°, around half of which can be related to the motion of the Indian block; the remainder is likely due local Himalayan-age thrusting in the Eastern Syntaxis. Several workers have correlated the Abor Volcanics with broadly coeval mafic volcanic suites in Oman, NE Pakistan–NW India and southern Tibet–Nepal, which developed in response to the Cimmerian block peeling-off eastern Gondwana in the Early-Middle Permian, but we believe there are problems with this model. Instead, we suggest that the Abor basalts relate to India–Antarctica/India–Australia extension that was happening at about the same time. Such an explanation best accommodates the relevant stratigraphical and structural data (present-day position within the Himalayan thrust stack), as well as the plate tectonic model for Permian eastern Gondwana.
Resumo:
Particulate matter is common in our environment and has been linked to human health problems particularly in the ultrafine size range. A range of chemical species have been associated with particulate matter and of special concern are the hazardous chemicals that can accentuate health problems. If the sources of such particles can be identified then strategies can be developed for the reduction of air pollution and consequently, the improvement of the quality of life. In this investigation, particle number size distribution data and the concentrations of chemical species were obtained at two sites in Brisbane, Australia. Source apportionment was used to determine the sources (or factors) responsible for the particle size distribution data. The apportionment was performed by Positive Matrix Factorisation (PMF) and Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS), and the results were compared with information from the gaseous chemical composition analysis. Although PCA/APCS resolved more sources, the results of the PMF analysis appear to be more reliable. Six common sources identified by both methods include: traffic 1, traffic 2, local traffic, biomass burning, and two unassigned factors. Thus motor vehicle related activities had the most impact on the data with the average contribution from nearly all sources to the measured concentrations higher during peak traffic hours and weekdays. Further analyses incorporated the meteorological measurements into the PMF results to determine the direction of the sources relative to the measurement sites, and this indicated that traffic on the nearby road and intersection was responsible for most of the factors. The described methodology which utilised a combination of three types of data related to particulate matter to determine the sources could assist future development of particle emission control and reduction strategies.
Resumo:
The need for a house rental model in Townsville, Australia is addressed. Models developed for predicting house rental levels are described. An analytical model is built upon a priori selected variables and parameters of rental levels. Regression models are generated to provide a comparison to the analytical model. Issues in model development and performance evaluation are discussed. A comparison of the models indicates that the analytical model performs better than the regression models.
Resumo:
Automated process discovery techniques aim at extracting models from information system logs in order to shed light into the business processes supported by these systems. Existing techniques in this space are effective when applied to relatively small or regular logs, but otherwise generate large and spaghetti-like models. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. The result is a collection of process models -- each one representing a variant of the business process -- as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically by means of subprocess extraction. The proposed technique allows users to set a desired bound for the complexity of the produced models. Experiments on real-life logs show that the technique produces collections of models that are up to 64% smaller than those extracted under the same complexity bounds by applying existing trace clustering techniques.
Resumo:
Production of nanofibrous polyacrylonitrile/calcium carbonate (PAN/CaCO3) nanocomposite web was carried out through solution electrospinning process. Pore generating nanoparticles were leached from the PAN matrices in hydrochloric acid bath with the purpose of producing an ultimate nanoporous structure. The possible interaction between CaCO3 nanoparticles and PAN functional groups was investigated. Atomic absorption method was used to measure the amount of extracted CaCO3 nanoparticles. Morphological observation showed nanofibers of 270–720 nm in diameter containing nanopores of 50–130 nm. Monitoring the governing parameters statistically, it was found that the amount of extraction (ε) of CaCO3was increased when the web surface area (a) was broadened according to a simple scaling law (ε = 3.18 a0.4). The leaching process was maximized in the presence of 5% v/v of acid in the extraction bath and 5 wt % of CaCO3 in the polymer solution. Collateral effects of the extraction time and temperature showed exponential growth within a favorable extremum at 50°C for 72 h. Concentration of dimethylformamide as the solvent had no significant impact on the extraction level.
Resumo:
Fouling of industrial surfaces by silica and calcium oxalate can be detrimental to a number of process streams. Solution chemistry plays a large roll in the rate and type of scale formed on industrial surfaces. This study is on the kinetics and thermodynamics of SiO2 and calcium oxalate composite formation in solutions containing Mg2+ ions, trans-aconitic acid and sucrose, to mimic factory sugar cane juices. The induction time (ti) of silicic acid polymerization is found to be dependent on the sucrose concentration and SiO2 supersaturation ratio (SS). Generalized kinetic and solubility models are developed for SiO2 and calcium oxalate in binary systems using response surface methodology. The role of sucrose, Mg, trans-aconitic acid, a mixture of Mg and trans-aconitic acid, SiO2 SS ratio and Ca in the formation of com- posites is explained using the solution properties of these species including their ability to form complexes.
Resumo:
Fire safety of light gauge steel frame (LSF) stud walls is important in the design of buildings. Currently LSF walls are increasingly used in the building industry, and are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. Many experimental and numerical studies have been undertaken to investigate the fire performance of load bearing LSF walls under standard fire conditions. However, the standard time-temperature curve does not represent the fire load present in typical residential and commercial buildings that include considerable amount of thermoplastic materials. Real building fires are unlikely to follow a standard time-temperature curve. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under realistic design fire conditions. Therefore in this research, finite element thermal models of the traditional LSF wall panels without cavity insulation and the new LSF composite wall panels were developed to simulate their fire performance under recently developed realistic design fire curves. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and literature review. The developed models were then validated by comparing their thermal performance results with available results from realistic design fire tests, and were later used in parametric studies. This paper presents the details of the developed finite element thermal models of load bearing LSF wall panels under realistic design fire time-temperature curves and the re-sults. It shows that finite element thermal models can be used to predict the fire performance of load bearing LSF walls with varying configurations of insulations and plasterboards under realistic design fires. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses.
Resumo:
Management of groundwater systems requires realistic conceptual hydrogeological models as a framework for numerical simulation modelling, but also for system understanding and communicating this to stakeholders and the broader community. To help overcome these challenges we developed GVS (Groundwater Visualisation System), a stand-alone desktop software package that uses interactive 3D visualisation and animation techniques. The goal was a user-friendly groundwater management tool that could support a range of existing real-world and pre-processed data, both surface and subsurface, including geology and various types of temporal hydrological information. GVS allows these data to be integrated into a single conceptual hydrogeological model. In addition, 3D geological models produced externally using other software packages, can readily be imported into GVS models, as can outputs of simulations (e.g. piezometric surfaces) produced by software such as MODFLOW or FEFLOW. Boreholes can be integrated, showing any down-hole data and properties, including screen information, intersected geology, water level data and water chemistry. Animation is used to display spatial and temporal changes, with time-series data such as rainfall, standing water levels and electrical conductivity, displaying dynamic processes. Time and space variations can be presented using a range of contouring and colour mapping techniques, in addition to interactive plots of time-series parameters. Other types of data, for example, demographics and cultural information, can also be readily incorporated. The GVS software can execute on a standard Windows or Linux-based PC with a minimum of 2 GB RAM, and the model output is easy and inexpensive to distribute, by download or via USB/DVD/CD. Example models are described here for three groundwater systems in Queensland, northeastern Australia: two unconfined alluvial groundwater systems with intensive irrigation, the Lockyer Valley and the upper Condamine Valley, and the Surat Basin, a large sedimentary basin of confined artesian aquifers. This latter example required more detail in the hydrostratigraphy, correlation of formations with drillholes and visualisation of simulation piezometric surfaces. Both alluvial system GVS models were developed during drought conditions to support government strategies to implement groundwater management. The Surat Basin model was industry sponsored research, for coal seam gas groundwater management and community information and consultation. The “virtual” groundwater systems in these 3D GVS models can be interactively interrogated by standard functions, plus production of 2D cross-sections, data selection from the 3D scene, rear end database and plot displays. A unique feature is that GVS allows investigation of time-series data across different display modes, both 2D and 3D. GVS has been used successfully as a tool to enhance community/stakeholder understanding and knowledge of groundwater systems and is of value for training and educational purposes. Projects completed confirm that GVS provides a powerful support to management and decision making, and as a tool for interpretation of groundwater system hydrological processes. A highly effective visualisation output is the production of short videos (e.g. 2–5 min) based on sequences of camera ‘fly-throughs’ and screen images. Further work involves developing support for multi-screen displays and touch-screen technologies, distributed rendering, gestural interaction systems. To highlight the visualisation and animation capability of the GVS software, links to related multimedia hosted online sites are included in the references.
Resumo:
In this work, the structural and gas sensing properties of an electropolymerized, polyaniline (PANI)/multiwall carbon nanotube (MWNT) composite based surface acoustic wave (SAW) sensor are reported. Thin films made of PANI nanofibers were deposited onto 36 lithium tantalate (LiTaO3) SAW transducers using electropolymerization and were subsequently dedoped. Scanning electron microscopy (SEM) revealed the compact growth of the composites which is much denser than that of PANI nanofibers. The PANI/MWNT composite based SAW sensor was then exposed to different concentrations of hydrogen (H2) gas at room temperature with a demonstrated electrical response.