441 resultados para Bubble detection
Resumo:
Acoustics is a rich source of environmental information that can reflect the ecological dynamics. To deal with the escalating acoustic data, a variety of automated classification techniques have been used for acoustic patterns or scene recognition, including urban soundscapes such as streets and restaurants; and natural soundscapes such as raining and thundering. It is common to classify acoustic patterns under the assumption that a single type of soundscapes present in an audio clip. This assumption is reasonable for some carefully selected audios. However, only few experiments have been focused on classifying simultaneous acoustic patterns in long-duration recordings. This paper proposes a binary relevance based multi-label classification approach to recognise simultaneous acoustic patterns in one-minute audio clips. By utilising acoustic indices as global features and multilayer perceptron as a base classifier, we achieve good classification performance on in-the-field data. Compared with single-label classification, multi-label classification approach provides more detailed information about the distributions of various acoustic patterns in long-duration recordings. These results will merit further biodiversity investigations, such as bird species surveys.
Resumo:
Stationary processes are random variables whose value is a signal and whose distribution is invariant to translation in the domain of the signal. They are intimately connected to convolution, and therefore to the Fourier transform, since the covariance matrix of a stationary process is a Toeplitz matrix, and Toeplitz matrices are the expression of convolution as a linear operator. This thesis utilises this connection in the study of i) efficient training algorithms for object detection and ii) trajectory-based non-rigid structure-from-motion.
Resumo:
Objective: We aimed to assess the impact of task demands and individual characteristics on threat detection in baggage screeners. Background: Airport security staff work under time constraints to ensure optimal threat detection. Understanding the impact of individual characteristics and task demands on performance is vital to ensure accurate threat detection. Method: We examined threat detection in baggage screeners as a function of event rate (i.e., number of bags per minute) and time on task across 4 months. We measured performance in terms of the accuracy of detection of Fictitious Threat Items (FTIs) randomly superimposed on X-ray images of real passenger bags. Results: Analyses of the percentage of correct FTI identifications (hits) show that longer shifts with high baggage throughput result in worse threat detection. Importantly, these significant performance decrements emerge within the first 10 min of these busy screening shifts only. Conclusion: Longer shift lengths, especially when combined with high baggage throughput, increase the likelihood that threats go undetected. Application: Shorter shift rotations, although perhaps difficult to implement during busy screening periods, would ensure more consistently high vigilance in baggage screeners and, therefore, optimal threat detection and passenger safety.
Resumo:
Purpose To examine the effects of optical blur, auditory distractors and age on eye movement patterns while performing a driving hazard perception test (HPT). Methods Twenty young (mean age 27.1 ± 4.6 years) and 20 older (73.3 ± 5.7 years) drivers with normal vision completed a HPT in a repeated-measures counterbalanced design while their eye movements were recorded. Testing was performed under two visual (best-corrected vision and with +2.00DS blur) and two distractor (with and without auditory distraction) conditions. Participants were required to respond to road hazards appearing in the HPT videos of real-world driving scenes and their hazard response times were recorded. Results Blur and distractors each significantly delayed hazard response time, by 0.42 and 0.76s respectively (p<0.05). A significant interaction between age and distractors indicated that older drivers were more affected by distractors than young drivers (response with distractors delayed by 0.96 and 0.60s respectively). There were no other two- or three-way interaction effect on response time. With blur, both groups fixated significantly longer on hazards before responding compared to best-corrected vision. In the presence of distractors, both groups exhibited delayed first fixation on the hazards and spent less time fixating on the hazards. There were also significant differences in eye movement characteristics between groups, where older drivers exhibited smaller saccades, delayed first fixation on hazards, and shorter fixation duration on hazards compared to the young drivers. Conclusions Collectively, the findings of delayed hazard response times and alterations in eye movement patterns with blur and distractors provide further evidence that visual impairment and distractors are independently detrimental to driving safety given that delayed hazard response times are linked to increased crash risk.
Resumo:
Suspension bridges are flexible and vibration sensitive structures that exhibit complex and multi-modal vibration. Due to this, the usual vibration based methods could face a challenge when used for damage detection in these structures. This paper develops and applies a mode shape component specific damage index (DI) to detect and locate damage in a suspension bridge with pre-tensioned cables. This is important as suspension bridges are large structures and damage in them during their long service lives could easily go un-noticed. The capability of the proposed vibration based DI is demonstrated through its application to detect and locate single and multiple damages with varied locations and severity in the cables of the suspension bridge. The outcome of this research will enhance the safety and performance of these bridges which play an important role in the transport network.
Resumo:
A large number of human polyomaviruses have been discovered in the last 7 years. However, little is known about the clinical impact on vulnerable immunosuppressed patient populations. Blood, urine, and respiratory swabs collected from a prospective, longitudinal adult kidney transplant cohort (n = 167) generally pre-operatively, at day 4, months 1, 3, and 6 posttransplant, and at BK viremic episodes within the first year were screened for 12 human polyomaviruses using real-time polymerase chain reaction. Newly discovered polyomaviruses were most commonly detected in the respiratory tract, with persistent shedding seen for up to 6 months posttransplant. Merkel cell polyomavirus was the most common detection, but was not associated with clinical symptoms or subsequent development of skin cancer or other skin abnormalities. In contrast, KI polyomavirus was associated with respiratory disease in a subset of patients. Human polyomavirus 9, Malawi polyomavirus, and human polyomavirus 12 were not detected in any patient samples.