515 resultados para Bayesian Modeling Averaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organizational and technological systems analysis and design practices such as process modeling have received much attention in recent years. However, while knowledge about related artifacts such as models, tools, or grammars has substantially matured, little is known about the actual tasks and interaction activities that are conducted as part of analysis and design acts. In particular, key role of the facilitator has not been researched extensively to date. In this paper, we propose a new conceptual framework that can be used to examine facilitation behaviors in process modeling projects. The framework distinguishes four behavioral styles in facilitation (the driving engineer, the driving artist, the catalyzing engineer, and the catalyzing artist) that a facilitator can adopt. To distinguish between the four styles, we provide a set of ten behavioral anchors that underpin facilitation behaviors. We also report on a preliminary empirical exploration of our framework through interviews with experienced analysts in six modeling cases. Our research provides a conceptual foundation for an emerging theory for describing and explaining different behaviors associated with process modeling facilitation, provides first preliminary empirical results about facilitation in modeling projects, and provides a fertile basis for examining facilitation in other conceptual modeling activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilities worldwide are focused on supplying peak electricity demand reliably and cost effectively, requiring a thorough understanding of all the factors influencing residential electricity use at peak times. An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008, and by 2011, peak demand had decreased to below pre-intervention levels. This paper applied field data discovered through qualitative in-depth interviews of 22 residential households at the community to a Bayesian Network complex system model to examine whether the system model could explain successful peak demand reduction in the case study location. The knowledge and understanding acquired through insights into the major influential factors and the potential impact of changes to these factors on peak demand would underpin demand reduction intervention strategies for a wider target group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present contribution deals with the numerical modelling of railway track-supporting systems-using coupled finite-infinite elements-to represent the near and distant field stress distribution, and also employing a thin layer interface element to account for the interfacial behaviour between sleepers and ballast. To simulate the relative debonding, slipping and crushing at the contact area between sleepers and ballast, a modified Mohr-Coulomb criterion was adopted. Further more an attempt was made to consider the elasto plastic materials’ non-linearity of the railway track supporting media by employing different constitutive models to represent steel, concrete and other supporting materials. It is seen that during an incremental-iterative mode of load application, the yielding initially started from the edge of the sleepers and then flowed vertically downwards and spread towards the centre of the railway supporting system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Draglines are extremely large machines that are widely used in open-cut coal mines for overburden stripping. Since 1994 we have been working toward the development of a computer control system capable of automatically driving a dragline for a large portion of its operating cycle. This has necessitated the development and experimental evaluation of sensor systems, machines models, closed-loop control controllers, and an operator interface. This paper describes our steps toward the goal through scale-model and full-scale field experimentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power line inspection is a vital function for electricity supply companies but it involves labor-intensive and expensive procedures which are tedious and error-prone for humans to perform. A possible solution is to use an unmanned aerial vehicle (UAV) equipped with video surveillance equipment to perform the inspection. This paper considers how a small, electrically driven rotorcraft conceived for this application could be controlled by visually tracking the overhead supply lines. A dynamic model for a ducted-fan rotorcraft is presented and used to control the action of an Air Vehicle Simulator (AVS), consisting of a cable-array robot. Results show how visual data can be used to determine, and hence regulate in closed loop, the simulated vehicle’s position relative to the overhead lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Preventing risk factor exposure is vital to reduce the high burden from lung cancer. The leading risk factor for developing lung cancer is tobacco smoking. In Australia, despite apparent success in reducing smoking prevalence, there is limited information on small area patterns and small area temporal trends. We sought to estimate spatio-temporal patterns for lung cancer risk factors using routinely collected population-based cancer data. Methods: The analysis used a Bayesian shared component spatio-temporal model, with male and female lung cancer included separately. The shared component reflected exposure to lung cancer risk factors, and was modelled over 477 statistical local areas (SLAs) and 15 years in Queensland, Australia. Analyses were also run adjusting for area-level socioeconomic disadvantage, Indigenous population composition, or remoteness. Results: Strong spatial patterns were observed in the underlying risk factor exposure for both males (median Relative Risk (RR) across SLAs compared to the Queensland average ranged from 0.48-2.00) and females (median RR range across SLAs 0.53-1.80), with high exposure observed in many remote areas. Strong temporal trends were also observed. Males showed a decrease in the underlying risk across time, while females showed an increase followed by a decrease in the final two years. These patterns were largely consistent across each SLA. The high underlying risk estimates observed among disadvantaged, remote and indigenous areas decreased after adjustment, particularly among females. Conclusion: The modelled underlying exposure appeared to reflect previous smoking prevalence, with a lag period of around 30 years, consistent with the time taken to develop lung cancer. The consistent temporal trends in lung cancer risk factors across small areas support the hypothesis that past interventions have been equally effective across the state. However, this also means that spatial inequalities have remained unaddressed, highlighting the potential for future interventions, particularly among remote areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The impact of socio-environmental factors on suicide has been examined in many studies. Few of them, however, have explored these associations from a spatial perspective, especially in assessing the association between meteorological factors and suicide. This study examined the association of meteorological and socio-demographic factors with suicide across small areas over different time periods. Methods Suicide, population and socio-demographic data (e.g., population of Aboriginal and Torres Strait Islanders (ATSI), and unemployment rate (UNE) at the Local Government Area (LGA) level were obtained from the Australian Bureau of Statistics for the period of 1986 to 2005. Information on meteorological factors (rainfall, temperature and humidity) was supplied by Australian Bureau of Meteorology. A Bayesian Conditional Autoregressive (CAR) Model was applied to explore the association of socio-demographic and meteorological factors with suicide across LGAs. Results In Model I (socio-demographic factors), proportion of ATSI and UNE were positively associated with suicide from 1996 to 2000 (Relative Risk (RR)ATSI = 1.0107, 95% Credible Interval (CI): 1.0062-1.0151; RRUNE = 1.0187, 95% CI: 1.0060-1.0315), and from 2001 to 2005 (RRATSI = 1.0126, 95% CI: 1.0076-1.0176; RRUNE = 1.0198, 95% CI: 1.0041-1.0354). Socio-Economic Index for Area (SEIFA) and IND, however, had negative associations with suicide between 1986 and 1990 (RRSEIFA = 0.9983, 95% CI: 0.9971-0.9995; RRATSI = 0.9914, 95% CI: 0.9848-0.9980). Model II (meteorological factors): a 1°C higher yearly mean temperature across LGAs increased the suicide rate by an average by 2.27% (95% CI: 0.73%, 3.82%) in 1996–2000, and 3.24% (95% CI: 1.26%, 5.21%) in 2001–2005. The associations between socio-demographic factors and suicide in Model III (socio-demographic and meteorological factors) were similar to those in Model I; but, there is no substantive association between climate and suicide in Model III. Conclusions Proportion of Aboriginal and Torres Strait Islanders, unemployment and temperature appeared to be statistically associated with of suicide incidence across LGAs among all selected variables, especially in recent years. The results indicated that socio-demographic factors played more important roles than meteorological factors in the spatial pattern of suicide incidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a new method for performing Bayesian parameter inference and model choice for low count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel pseudo-marginal algorithm, which we refer to as alive SMC^2. The advantages of this approach over competing approaches is that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series and the cumulative number of poison disease cases in mule deer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of expert knowledge to quantify a Bayesian Network (BN) is necessary when data is not available. This however raises questions regarding how opinions from multiple experts can be used in a BN. Linear pooling is a popular method for combining probability assessments from multiple experts. In particular, Prior Linear Pooling (PrLP), which pools opinions then places them into the BN is a common method. This paper firstly proposes an alternative pooling method, Posterior Linear Pooling (PoLP). This method constructs a BN for each expert, then pools the resulting probabilities at the nodes of interest. Secondly, it investigates the advantages and disadvantages of using these pooling methods to combine the opinions of multiple experts. Finally, the methods are applied to an existing BN, the Wayfinding Bayesian Network Model, to investigate the behaviour of different groups of people and how these different methods may be able to capture such differences. The paper focusses on 6 nodes Human Factors, Environmental Factors, Wayfinding, Communication, Visual Elements of Communication and Navigation Pathway, and three subgroups Gender (female, male),Travel Experience (experienced, inexperienced), and Travel Purpose (business, personal) and finds that different behaviors can indeed be captured by the different methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is currently a lack of reference values for indoor air fungal concentrations to allow for the interpretation of measurement results in subtropical school settings. Analysis of the results of this work established that, in the majority of properly maintained subtropical school buildings, without any major affecting events such as floods or visible mould or moisture contamination, indoor culturable fungi levels were driven by outdoor concentration. The results also allowed us to benchmark the “baseline range” concentrations for total culturable fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings. The measured concentration of total culturable fungi and three individual fungal genera were estimated using Bayesian hierarchical modelling. Pooling of these estimates provided a predictive distribution for concentrations at an unobserved school. The results indicated that “baseline” indoor concentration levels for indoor total fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings were generally ≤ 1450, ≤ 680, ≤ 480 and ≤ 90 cfu/m3, respectively, and elevated levels would indicate mould damage in building structures. The indoor/outdoor ratio for most classrooms had 95% credible intervals containing 1, indicating that fungi concentrations are generally the same indoors and outdoors at each school. Bayesian fixed effects regression modeling showed that increasing both temperature and humidity resulted in higher levels of fungi concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Having a clear project definition is crucial for successful construction projects. It affects design quality, project communication between stakeholders and final project performance in terms of cost, schedule and quality. This study examines the relationship between project definition and final project performance through a structural equation model comprising 4 latent constructs and 6 path hypotheses using data from a questionnaire survey of 120 general contractors in the Malaysian construction industry. The results show that in the study population, all three items impact the project performance, but the link between design quality and project performance is indirect. Instead, the clarity of project definition affects project performance indirectly through design quality and project communication and design quality affects project performance indirectly through project communication. The primary contribution is to provide quantitative confirmation of the more general statements made in the literature from around the world and therefore adds to and consolidates existing knowledge. Practical implications derived from the finding are also proposed for various project stakeholders. Furthermore, as lack of the clarity of project definition is a very common occurrence in construction projects globally, these findings have important ramifications for all construction projects in expanding and clarifying existing knowledge on what is needed for the successful delivery of construction projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme wind events such as tropical cyclones, tornadoes and storms are more likely to impact the Australian coastal regions due to possible climate changes. Such events can be extremely destructive to building structures, in particular, low-rise buildings with lightweight roofing systems that are commonly made of thin steel roofing sheets and battens. Large wind uplift loads that act on the roofs during high wind events often cause premature roof connection failures. Recent wind damage investigations have shown that roof failures have mostly occurred at the batten to rafter or truss screw connections. In most of these cases, the screw fastener heads pulled through the bottom flanges of thin steel roof battens. This roof connection failure is very critical as both roofing sheets and battens will be lost during the high wind events. Hence, a research study was conducted to investigate this critical pull-through failure using both experimental and numerical methods. This paper presents the details of numerical modeling and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces a new way of using prior information in a spatial model and develops scalable algorithms for fitting this model to large imaging datasets. These methods are employed for image-guided radiation therapy and satellite based classification of land use and water quality. This study has utilized a pre-computation step to achieve a hundredfold improvement in the elapsed runtime for model fitting. This makes it much more feasible to apply these models to real-world problems, and enables full Bayesian inference for images with a million or more pixels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: •Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. •Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. •Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.