241 resultados para trypsin-like serine protease
Resumo:
Endometrial cancer is one of the most common female diseases in developed nations and is the most commonly diagnosed gynaecological cancer in Australia. The disease is commonly classified by histology: endometrioid or non-endometrioid endometrial cancer. While non-endometrioid endometrial cancers are accepted to be high-grade, aggressive cancers, endometrioid cancers (comprising 80% of all endometrial cancers diagnosed) generally carry a favourable patient prognosis. However, endometrioid endometrial cancer patients endure significant morbidity due to surgery and radiotherapy used for disease treatment, and patients with recurrent disease have a 5-year survival rate of less than 50%. Genetic analysis of women with endometrial cancer could uncover novel markers associated with disease risk and/or prognosis, which could then be used to identify women at high risk and for the use of specialised treatments. Proteases are widely accepted to play an important role in the development and progression of cancer. This PhD project hypothesised that SNPs from two protease gene families, the matrix metalloproteases (MMPs, including their tissue inhibitors, TIMPs) and the tissue kallikrein-related peptidases (KLKs) would be associated with endometrial cancer susceptibility and/or prognosis. In the first part of this study, optimisation of the genotyping techniques was performed. Results from previously published endometrial cancer genetic association studies were attempted to be validated in a large, multicentre replication set (maximum cases n = 2,888, controls n = 4,483, 3 studies). The rs11224561 progesterone receptor SNP (PGR, A/G) was observed to be associated with increased endometrial cancer risk (per A allele OR 1.31, 95% CI 1.12-1.53; p-trend = 0.001), a result which was initially reported among a Chinese sample set. Previously reported associations for the remaining 8 SNPs investigated for this section of the PhD study were not confirmed, thereby reinforcing the importance of validation of genetic association studies. To examine the effect of SNPs from the MMP and KLK families on endometrial cancer risk, we selected the most significantly associated MMP and KLK SNPs from genome-wide association study analysis (GWAS) to be genotyped in the GWAS replication set (cases n = 4,725, controls n = 9,803, 13 studies). The significance of the MMP24 rs932562 SNP was unchanged after incorporation of the stage 2 samples (Stage 1 per allele OR 1.18, p = 0.002; Combined Stage 1 and 2 OR 1.09, p = 0.002). The rs10426 SNP, located 3' to KLK10 was predicted by bioinformatic analysis to effect miRNA binding. This SNP was observed in the GWAS stage 1 result to exhibit a recessive effect on endometrial cancer risk, a result which was not validated in the stage 2 sample set (Stage 1 OR 1.44, p = 0.007; Combined Stage 1 and 2 OR 1.14, p = 0.08). Investigation of the regions imputed surrounding the MMP, TIMP and KLK genes did not reveal any significant targets for further analysis. Analysis of the case data from the endometrial cancer GWAS to identify genetic variation associated with cancer grade did not reveal SNPs from the MMP, TIMP or KLK genes to be statistically significant. However, the representation of SNPs from the MMP, TIMP and KLK families by the GWAS genotyping platform used in this PhD project was examined and observed to be very low, with the genetic variation of four genes (MMP23A, MMP23B, MMP28 and TIMP1) not captured at all by this technique. This suggests that comprehensive candidate gene association studies will be required to assess the role of SNPs from these genes with endometrial cancer risk and prognosis. Meta-analysis of gene expression microarray datasets curated as part of this PhD study identified a number of MMP, TIMP and KLK genes to display differential expression by endometrial cancer status (MMP2, MMP10, MMP11, MMP13, MMP19, MMP25 and KLK1) and histology (MMP2, MMP11, MMP12, MMP26, MMP28, TIMP2, TIMP3, KLK6, KLK7, KLK11 and KLK12). In light of these findings these genes should be prioritised for future targeted genetic association studies. Two SNPs located 43.5 Mb apart on chromosome 15 were observed from the GWAS analysis to be associated with increased endometrial cancer grade, results that were validated in silico in two independent datasets. One of these SNPs, rs8035725 is located in the 5' untranslated region of a MYC promoter binding protein DENND4A (Stage 1 OR 1.15, p = 9.85 x 10P -5 P, combined Stage 1 and in silico validation OR 1.13, p = 5.24 x 10P -6 P). This SNP has previously been reported to alter the expression of PTPLAD1, a gene involved in the synthesis of very long fatty acid chains and in the Rac1 signaling pathway. Meta-analysis of gene expression microarray data found PTPLAD1 to display increased expression in the aggressive non-endometrioid histology compared with endometrioid endometrial cancer, suggesting that the causal SNP underlying the observed genetic association may influence expression of this gene. Neither rs8035725 nor significant SNPs identified by imputation were predicted bioinformatically to affect transcription factor binding sites, indicating that further studies are required to assess their potential effect on other regulatory elements. The other grade- associated SNP, rs6606792, is located upstream of an inferred pseudogene, ELMO2P1 (Stage 1 OR 1.12, p = 5 x 10P -5 P; combined Stage 1 and in silico validation OR 1.09, p = 3.56 x 10P -5 P). Imputation of the ±1 Mb region surrounding this SNP revealed a cluster of significantly associated variants which are predicted to abolish various transcription factor binding sites, and would be expected to decrease gene expression. ELMO2P1 was not included on the microarray platforms collected for this PhD, and so its expression could not be investigated. However, the high sequence homology of ELMO2P1 with ELMO2, a gene important to cell motility, indicates that ELMO2 could be the parent gene for ELMO2P1 and as such, ELMO2P1 could function to regulate the expression of ELMO2. Increased expression of ELMO2 was seen to be associated with increasing endometrial cancer grade, as well as with aggressive endometrial cancer histological subtypes by microarray meta-analysis. Thus, it is hypothesised that SNPs in linkage disequilibrium with rs6606792 decrease the transcription of ELMO2P1, reducing the regulatory effect of ELMO2P1 on ELMO2 expression. Consequently, ELMO2 expression is increased, cell motility is enhanced leading to an aggressive endometrial cancer phenotype. In summary, these findings have identified several areas of research for further study. The results presented in this thesis provide evidence that a SNP in PGR is associated with risk of developing endometrial cancer. This PhD study also reports two independent loci on chromosome 15 to be associated with increased endometrial cancer grade, and furthermore, genes associated with these SNPs to be differentially expressed according in aggressive subtypes and/or by grade. The studies reported in this thesis support the need for comprehensive SNP association studies on prioritised MMP, TIMP and KLK genes in large sample sets. Until these studies are performed, the role of MMP, TIMP and KLK genetic variation remains unclear. Overall, this PhD study has contributed to the understanding of genetic variation involvement in endometrial cancer susceptibility and prognosis. Importantly, the genetic regions highlighted in this study could lead to the identification of novel gene targets to better understand the biology of endometrial cancer and also aid in the development of therapeutics directed at treating this disease.
Resumo:
The complete nucleotide sequence of Subterranean clover mottle virus (SCMoV) genomic RNA has been determined. The SCMoV genome is 4,258 nucleotides in length. It shares most nucleotide and amino acid sequence identity with the genome of Lucerne transient streak virus (LTSV). SCMoV RNA encodes four overlapping open reading frames and has a genome organisation similar to that of Cocksfoot mottle virus (CfMV). ORF1 and ORF4 are predicted to encode single proteins. ORF2 is predicted to encode two proteins that are derived from a -1 translational frameshift between two overlapping reading frames (ORF2a and ORF2b). A search of amino acid databases did not find a significant match for ORF1 and the function of this protein remains unclear. ORF2a contains a motif typical of chymotrypsin-like serine proteases and ORF2b has motifs characteristically present in positive-stranded RNA-dependent RNA polymerases. ORF4 is likely to be expressed from a subgenomic RNA and encodes the viral coat protein. The ORF2a/ORF2b overlapping gene expression strategy used by SCMoV and CfMV is similar to that of the poleroviruses and differ from that of other published sobemoviruses. These results suggest that the sobemoviruses could now be divided into two distinct subgroups based on those that express the RNA-dependent RNA polymerase from a single, in-frame polyprotein, and those that express it via a -1 translational frameshifting mechanism.
Resumo:
The suggested model for pro-matrix metalloproteinase-2 (proMMP-2) activation by membrane type 1 MMP (MT1-MMP) implicates the complex between MT1-MMP and tissue inhibitor of MMP-2 (TIMP-2) as a receptor for proMMP-2. To dissect this model and assess the pathologic significance of MMP-2 activation, an artificial receptor for proMMP-2 was created by replacing the signal sequence of TIMP-2 with cytoplasmic/transmembrane domain of type II transmembrane mosaic serine protease (MSP-T2). Unlike TIMP-2, MSP-T2 served as a receptor for proMMP-2 without inhibiting MT1-MMP, and generated TIMP-2-free active MMP-2 even at a low level of MT1-MMP. Thus, MSP-T2 did not affect direct cleavage of the substrate testican-1 by MT1-MMP, whereas TIMP-2 inhibited it even at the level that stimulates proMMP-2 processing. Expression of MSP-T2 in HT1080 cells enhanced MMP-2 activation by endogenous MT1-MMP and caused intensive hydrolysis of collagen gel. Expression of MSP-T2 in U87 glioma cells, which express a trace level of endogenous MT1-MMP, induced MMP-2 activation and enhanced cell-associated protease activity, activation of extracellular signal-regulated kinase, and metastatic ability into chick embryonic liver and lung. MT1-MMP can exert both maximum MMP-2 activation and direct cleavage of substrates with MSP-T2, which cannot be achieved with TIMP-2. These results suggest that MMP-2 activation by MT1-MMP potentially amplifies protease activity, and combination with direct cleavage of substrate causes effective tissue degradation and enhances tumor invasion and metastasis, which highlights the complex role of TIMP-2. MSP-T2 is a unique tool to analyze physiologic and pathologic roles of MMP-2 and MT1-MMP in comparison with TIMP-2.
Resumo:
Autotransporter (AT) proteins are found in all Escherichia coli pathotypes and are often associated with virulence. In this study we took advantage of the large number of available E. coli genome sequences to perform an in-depth bioinformatic analysis of AT-encoding genes. Twenty-eight E. coli genome sequences were probed using an iterative approach, which revealed a total of 215 AT-encoding sequences that represented three major groups of distinct domain architecture: (i) serine protease AT proteins, (ii) trimeric AT adhesins and (iii) AIDA-I-type AT proteins. A number of subgroups were identified within each broad category, and most subgroups contained at least one characterized AT protein; however, seven subgroups contained no previously described proteins. The AIDA-I-type AT proteins represented the largest and most diverse group, with up to 16 subgroups identified from sequence-based comparisons. Nine of the AIDA-I-type AT protein subgroups contained at least one protein that possessed functional properties associated with aggregation and/or biofilm formation, suggesting a high degree of redundancy for this phenotype. The Ag43, YfaL/EhaC, EhaB/UpaC and UpaG subgroups were found in nearly all E. coli strains. Among the remaining subgroups, there was a tendency for AT proteins to be associated with individual E. coli pathotypes, suggesting that they contribute to tissue tropism or symptoms specific to different disease outcomes.
Resumo:
Background Chlamydia (C.) trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Genetic approaches to investigate C. trachomatis have been only recently developed due to the organism’s intracellular developmental cycle. HtrA is a critical stress response serine protease and chaperone for many bacteria and in C. trachomatis has been previously shown to be important for heat stress and the replicative phase of development using a chemical inhibitor of the CtHtrA activity. In this study, chemically-induced SNVs in the cthtrA gene that resulted in amino acid substitutions (A240V, G475E, and P370L) were identified and characterized. Methods SNVs were initially biochemically characterized in vitro using recombinant protein techniques to confirm a functional impact on proteolysis. The C. trachomatis strains containing the SNVs with marked reductions in proteolysis were investigated in cell culture to identify phenotypes that could be linked to CtHtrA function. Results The strain harboring the SNV with the most marked impact on proteolysis (cthtrAP370L) was detected to have a significant reduction in the production of infectious elementary bodies. Conclusions This provides genetic evidence that CtHtrA is critical for the C. trachomatis developmental cycle.
Resumo:
Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.
Resumo:
Potent and specific enzyme inhibition is a key goal in the development of therapeutic inhibitors targeting proteolytic activity. The backbone-cyclized peptide, Sunflower Trypsin Inhibitor (SFTI-1) affords a scaffold that can be engineered to achieve both these aims. SFTI-1's mechanism of inhibition is unusual in that it shows fast-on/slow-off kinetics driven by cleavage and religation of a scissile bond. This phenomenon was used to select a nanomolar inhibitor of kallikrein-related peptidase 7 (KLK7) from a versatile library of SFTI variants with diversity tailored to exploit distinctive surfaces present in the active site of serine proteases. Inhibitor selection was achieved through the use of size exclusion chromatography to separate protease/inhibitor complexes from unbound inhibitors followed by inhibitor identification according to molecular mass ascertained by mass spectrometry. This approach identified a single dominant inhibitor species with molecular weight of 1562.4 Da, which is consistent with the SFTI variant SFTI-WCTF. Once synthesized individually this inhibitor showed an IC50 of 173.9 ± 7.6 nM against chromogenic substrates and could block protein proteolysis. Molecular modeling analysis suggested that selection of SFTI-WCTF was driven by specific aromatic interactions and stabilized by an enhanced internal hydrogen bonding network. This approach provides a robust and rapid route to inhibitor selection and design.
Resumo:
The use of animal sera for the culture of therapeutically important cells impedes the clinical use of the cells. We sought to characterize the functional response of human mesenchymal stem cells (hMSCs) to specific proteins known to exist in bone tissue with a view to eliminating the requirement of animal sera. Insulin-like growth factor-I (IGF-I), via IGF binding protein-3 or -5 (IGFBP-3 or -5) and transforming growth factor-beta 1 (TGF-beta(1)) are known to associate with the extracellular matrix (ECM) protein vitronectin (VN) and elicit functional responses in a range of cell types in vitro. We found that specific combinations of VN, IGFBP-3 or -5, and IGF-I or TGF-beta(1) could stimulate initial functional responses in hMSCs and that IGF-I or TGF-beta(1) induced hMSC aggregation, but VN concentration modulated this effect. We speculated that the aggregation effect may be due to endogenous protease activity, although we found that neither IGF-I nor TGF-beta(1) affected the functional expression of matrix metalloprotease-2 or -9, two common proteases expressed by hMSCs. In summary, combinations of the ECM and growth factors described herein may form the basis of defined cell culture media supplements, although the effect of endogenous protease expression on the function of such proteins requires investigation.
Resumo:
The kallikreins and kallikrein-related peptidases are serine proteases that control a plethora of developmental and homeostatic phenomena, ranging from semen liquefaction to skin desquamation and blood pressure. The diversity of roles played by kallikreins has stimulated considerable interest in these enzymes from the perspective of diagnostics and drug design. Kallikreins already have well-established credentials as targets for therapeutic intervention and there is increasing appreciation of their potential both as biomarkers and as targets for inhibitor design. Here, we explore the current status of naturally occurring kallikrein protease-inhibitor complexes and illustrate how this knowledge can interface with strategies for rational re-engineering of bioscaffolds and design of small-molecule inhibitors.
Resumo:
Chlamydia trachomatis is a bacterial pathogen responsible for one of the most prevalent sexually transmitted infections worldwide. Its unique development cycle has limited our understanding of its pathogenic mechanisms. However, CtHtrA has recently been identified as a potential C. trachomatis virulence factor. CtHtrA is a tightly regulated quality control protein with a monomeric structural unit comprised of a chymotrypsin-like protease domain and two PDZ domains. Activation of proteolytic activity relies on the C-terminus of the substrate allosterically binding to the PDZ1 domain, which triggers subsequent conformational change and oligomerization of the protein into 24-mers enabling proteolysis. This activation is mediated by a cascade of precise structural arrangements, but the specific CtHtrA residues and structural elements required to facilitate activation are unknown. Using in vitro analysis guided by homology modeling, we show that the mutation of residues Arg362 and Arg224, predicted to disrupt the interaction between the CtHtrA PDZ1 domain and loop L3, and between loop L3 and loop LD, respectively, are critical for the activation of proteolytic activity. We also demonstrate that mutation to residues Arg299 and Lys160, predicted to disrupt PDZ1 domain interactions with protease loop LC and strand β5, are also able to influence proteolysis, implying their involvement in the CtHtrA mechanism of activation. This is the first investigation of protease loop LC and strand β5 with respect to their potential interactions with the PDZ1 domain. Given their high level of conservation in bacterial HtrA, these structural elements may be equally significant in the activation mechanism of DegP and other HtrA family members.
Resumo:
Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance.
Resumo:
Using both human and murine cell lines, we show that malignant cells are able to invade through basement membrane and also secrete elevated amounts of collagenase IV, an enzyme implicated in the degradation of basement membranes. Using serine proteinase inhibitors and antibodies to plasminogen activators as well as a newly described collagenase inhibitor we demonstrate that a protease cascade leads to the activation of an enzyme(s) that cleaves collagen IV. Inhibition at each step reduces the invasion of the tumor cells through reconstituted basement membrane in vitro. Treatment with a collagenase inhibitor reduced the incidence of lung lesions in mice given i.v. injections of malignant melanoma cells.
Resumo:
Staphylococcus saprophyticus is an important cause of urinary tract infection (UTI), particularly among young women, and is second only to uropathogenic Escherichia coli as the most frequent cause of UTI. The molecular mechanisms of urinary tract colonization by S. saprophyticus remain poorly understood. We have identified a novel 6.84 kb plasmid-located adhesin-encoding gene in S. saprophyticus strain MS1146 which we have termed uro-adherence factor B (uafB). UafB is a glycosylated serine-rich repeat protein that is expressed on the surface of S. saprophyticus MS1146. UafB also functions as a major cell surface hydrophobicity factor. To characterize the role of UafB we generated an isogenic uafB mutant in S. saprophyticus MS1146 by interruption with a group II intron. The uafB mutant had a significantly reduced ability to bind to fibronectin and fibrinogen. Furthermore, we show that a recombinant protein containing the putative binding domain of UafB binds specifically to fibronectin and fibrinogen. UafB was not involved in adhesion in a mouse model of UTI; however, we observed a striking UafB-mediated adhesion phenotype to human uroepithelial cells. We have also identified genes homologous to uafB in other staphylococci which, like uafB, appear to be located on transposable elements. Thus, our data indicate that UafB is a novel adhesin of S. saprophyticus that contributes to cell surface hydrophobicity, mediates adhesion to fibronectin and fibrinogen, and exhibits tropism for human uroepithelial cells.
Resumo:
Prostate-specific antigen (PSA) and the related kallikrein family of serine proteases are current or emerging biomarkers for prostate cancer detection and progression. Kallikrein 4 (KLK4/hK4) is of particular interest, as KLK4 mRNA has been shown to be elevated in prostate cancer. In this study, we now show that the comparative expression of hK4 protein in prostate cancer tissues, compared with benign glands, is greater than that of PSA and kallikrein 2 (KLK2/hK2), suggesting that hK4 may play an important functional role in prostate cancer progression in addition to its biomarker potential. To examine the roles that hK4, as well as PSA and hK2, play in processes associated with progression, these kallikreins were separately transfected into the PC-3 prostate cancer cell line, and the consequence of their stable transfection was investigated. PC-3 cells expressing hK4 had a decreased growth rate, but no changes in cell proliferation were observed in the cells expressing PSA or hK2. hK4 and PSA, but not hK2, induced a 2.4-fold and 1.7-fold respective increase, in cellular migration, but not invasion, through Matrigel, a synthetic extracellular matrix. We hypothesised that this increase in motility displayed by the hK4 and PSA-expressing PC-3 cells may be related to the observed change in structure in these cells from a typical rounded epithelial-like cell to a spindle-shaped, more mesenchymal-like cell, with compromised adhesion to the culture surface. Thus, the expression of E-cadherin and vimentin, both associated with an epithelial-mesenchymal transition (EMT), was investigated. E-cadherin protein was lost and mRNA levels were significantly decreased in PC-3 cells expressing hK4 and PSA (10-fold and 7-fold respectively), suggesting transcriptional repression of E-cadherin, while the expression of vimentin was increased in these cells. The loss of E-cadherin and associated increase in vimentin are indicative of EMT and provides compelling evidence that hK4, in particular, and PSA have a functional role in the progression of prostate cancer through their promotion of tumour cell migration.