84 resultados para thiazolidine-4-carboxylic acid
Resumo:
In the structure of the title anhydrous salt C4H12N+ C8H3Cl2O4-, the 4,5-dichlorophthalate monoanions have the common 'planar' conformation with the carboxyl groups close to coplanar with the benzene ring and with a short intramolecular carboxylic acid O-H...O hydrogen bond. A two-dimensional sheet structure is formed through aminium N-H...O(carboxyl) hydrogen-bonding associations.
Resumo:
In the structure of the title compound, C5H7N2+ C8H11O4-, the cis-monoanions associate through short carboxylic acid-carboxyl O-H...O hydrogen bonds [graph set C(7)], forming zigzag chains which extend along c and are inter-linked through pyridinium and amine N-H...O(carboxyl) hydrogen bonds giving a three-dimensional network structure.
Resumo:
The structures of two hydrated proton-transfer compounds of 4-piperidinecarboxamide (isonipecotamide) with the isomeric heteroaromatic carboxylic acids indole-2-carboxylic acid and indole-3-carboxylic acid, namely 4-carbamoylpiperidinium indole-2-carboxylate dihydrate (1) and 4-carbamoylpiperidinium indole-3-carboxylate hemihydrate (2) have been determined at 200 K. Crystals of both 1 and 2 are monoclinic, space groups P21/c and P2/c respectively with Z = 4 in cells having dimensions a = 10.6811(4), b = 12.2017(4), c = 12.5456(5) Å, β = 96.000(4)o (1) and a = 15.5140(4), b = 10.2908(3), c = 9.7047(3) Å, β = 97.060(3)o (2). Hydrogen-bonding in 1 involves a primary cyclic interaction involving complementary cation amide N-H…O(carboxyl) anion and anion hetero N-H…O(amide) cation hydrogen bonds [graph set R22(9)]. Secondary associations involving also the water molecules of solvation give a two-dimensional network structure which includes weak water O-H…π interactions. In the three-dimensional hydrogen-bonded structure of 2, there are classic centrosymmetric cyclic head-to-head hydrogen-bonded amide-amide interactions [graph set R22(8)] as well as lateral cyclic amide-O linked amide-amide extensions [graph set R24(8)]. The anions and the water molecule, which lies on a twofold rotation axis, are involved in secondary extensions.
Resumo:
In the title salt, racemic C6H12N2O+ C8H11O4- from the reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with isonipecotamide, the cations are linked into duplex chain substructures through both centrosymmetric cyclic head-to-head 'amide motif' hydrogen-bonding associations [graph set R2/2(8)] and 'side-by-side' R2/2(14) associations. The anions are incorporated into the chains through cyclic R3/4(10) interactions involving amide and piperidinium N-H...O(carboxyl) hydrogen bonds which, together with inter-anion carboxylic acid O-H...O(carboxyl) hydrogen bonds, give a two-dimensional layered structure extending along (011).
Resumo:
In the title salt, C12H11N2O2+·C7H5O6S-, the dihedral angle between the benzene and pyridine rings in the 4-(4-nitrobenzyl)pyridinium cation is 82.7 (2)°. Within the anion there is an intramolecular hydroxy-O-HO(carboxylic acid) bond. In the crystal, the cation forms a single N+-HOsulfonate hydrogen bond with the anion. These cation-anion pairs interact through duplex anion carboxylic acid O-HOsulfonate hydrogen bonds, giving a centrosymmetric cyclic association [graph set R22(16)]. The crystals studied were non-merohedrally twinned.
Resumo:
Fourteen new complexes of the form cis-\[RuIIX2(R2qpy2+)2]4+ (R2qpy2+ = a 4,4′:2′,2″:4″,4‴-quaterpyridinium ligand, X = Cl− or NCS−) have been prepared and isolated as their PF6− salts. Characterisation involved various techniques including 1H NMR spectroscopy and +electrospray or MALDI mass spectrometry. The UV–Vis spectra display intense intraligand π → π∗ absorptions, and also metal-to-ligand charge-transfer (MLCT) bands with two resolved maxima in the visible region. Red-shifts in the MLCT bands occur as the electron-withdrawing strength of the pyridinium groups increases, while replacing Cl− with NCS− causes blue-shifts. Cyclic voltammograms show quasi-reversible or reversible RuIII/II oxidation waves, and several ligand-based reductions that are irreversible. The variations in the redox potentials correlate with changes in the MLCT energies. A single-crystal X-ray structure has been obtained for a protonated form of a proligand salt, \[(4-(CO2H)Ph)2qpyH3+]\[HSO4]3·3H2O. Time-dependent density functional theory calculations give adequate correlations with the experimental UV–Vis spectra for the two carboxylic acid-functionalised complexes in DMSO. Despite their attractive electronic absorption spectra, these dyes are relatively inefficient photosensitisers on electrodes coated with TiO2 or ZnO. These observations are attributed primarily to weak electronic coupling with the surfaces, since the DFT-derived LUMOs include no electron density near the carboxylic acid anchors.
Resumo:
Fatty acids are long-chain carboxylic acids that readily produce \[M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely \[M - 2H + (FeCl)-Cl-II](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., \[M - 2H + Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an \[M - H + NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired \[M - 2H + Na](-) ion via the neutral loss of HF. (2) Direct formation of the \[M - 2H + Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of \[M - 2H + Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.
Resumo:
In the structure of the title salt C7H10NO+ C8H3Cl2O4- the benzene planes of the cation and anion are essentially parallel [inter-ring dihedral angle 4.8(2)deg]. In the anion the carboxylic acid and carboxylate groups make dihedral angles of 19.0(2) and 79.5(2)\%, respectively, with the benzene ring. Aminium N-H...O, carboxylic acid O-H...O and weak aromatic C-H...O hydrogen-bonding associations with carboxyl O-atom acceptors together with cation-anion pi-pi ring interactions [minimum ring centroid separation = 3.734(3)Ang] give a two-dimensional sheet structure which lies parallel to (001).
Resumo:
The structures of the 1:1 hydrated proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with oxalic acid, 4-carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4-·2H2O, (I), and with adipic acid, bis(4-carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42-·2H2O, (II), are three-dimensional hydrogen-bonded constructs involving several different types of enlarged water-bridged cyclic associations. In the structure of (I), the oxalate monoanions give head-to-tail carboxylic acid O-HOcarboxyl hydrogen-bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N-HO hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O-atom acceptors and amide and piperidinium N-HOcarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion-related cations are interlinked through the two water molecules, which act as acceptors in dual amide N-HOwater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N-HOwater, water O-HOamide and piperidinium N-HOcarboxyl hydrogen bonds give the overall three-dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non-occurrence of the common hydrogen-bonded amide-amide dimer, promoting instead various expanded cyclic hydrogen-bonding motifs.
Resumo:
We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.
Resumo:
The structures of the 1:1 anhydrous salts of nicotine (NIC) with 3,5-dinitrosalicylic acid (DNSA) and 5-sulfosalicylic acid (5-SSA), namely (1R,2S)-1-methyl-2-(3-pyridyl)-1H-pyrrolidin-1-ium 2-carboxy-4,6-dinitrophenolate, C10H15N2+ C7H3N2O7-, (I) and (1R,2S)-1-methyl-2-(3-pyridyl)-1H-pyrrolidin-1-ium 3-carboxy-4-hydroxybenzenesulfonate, C10H15N2+ C7H5O6S-, (II) are reported. The asymmetric units of both (I) and (II) comprise two independent nicotinium cations (C and D) and either two DNSA or two 5-SSA anions (A and B), respectively. One of the DNSA anions shows a 25% rotational disorder in the benzene ring system. In the crystal of (I), inter-unit pyrrolidinium N-H...N(pyridine) hydrogen bonds generate zigzag NIC cation chains which extend along a while the DNSA anions are not involved in any formal inter-species hydrogen bonding but instead form pi--pi associated stacks which parallel the NIC chains along a [ring centroid separation, 3.857(2)A]. Weak C-H...O interactions between chain substructures give an overall three-dimensional structure. With (II), A and B anions form independent zigzag chains with C and D cations, respectively, through carboxylic acid O-H...N(pyridine) hydrogen bonds. These chains, which extend along b are pseudo-centrosymmetrically related and give pi--pi interactions between the benzene rings of anions A and B and the pyridine rings of the NIC cations C and D, respectively [ring centroid separations, 3.6422(19) and 3.7117(19)A]. Present also are weak intermolecular C-H...O hydrogen-bonding interactions between the chains, giving an overall three-dimensional structure.
Resumo:
The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.
Resumo:
In the structure of the title compound, cis NH4+ C8H11O4-, the carboxylic acid and carboxyl groups of the cation adopt C-C-C-O torsion angles of 174.9(2) and -145.4(2)deg. respecticely with the alicyclic ring. The ammonium H atoms of the cations give a total of five hydrogen-bonding associations with carboxyl O-atom acceptors of the anion which, together with a carboxylic acid O-H...O(carboxyl) interaction give two-dimensional sheet structures which lie in the (101) planes in the unit cell.
Resumo:
The crystal structures of the proton-transfer compounds of 5-sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid) with the aliphatic nitrogen Lewis bases, hydroxylamine, triethylamine, pyrrolidine, morpholine, N-methylmorpholine and piperazine, viz. hydroxyammonium 3-carboxy-4-hydroxybenzenesulfonate (1), triethylaminium 3-carboxy-4-hydroxybenzenesulfonate (2), pyrrolidinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (3), morpholinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (4), N-methylmorpholinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (5) and piperazine-1,4-diium bis(3-carboxy-4-hydroxybenzenesulfonate) hexahydrate (6) have been determined and their comparative structural features and hydrogen-bonding patterns described. Crystals of 4 are triclinic, space group P-1 while the remainder are monoclinic with space group either P21/c (1 - 3) or P21/n (5, 6). Unit cell dimensions and contents are: for 1, a = 5.0156(3), b = 10.5738(6), c = 18.4785(9) Å, β = 96.412(5)o, Z = 4; for 2, a = 8.4998(4), b = 12.3832(6), c = 15.4875(9) Å, β = 102.411(5)o, Z = 4; for 3, a = 6.8755(2), b = 15.5217(4), c = 12.8335(3) Å, β = 92.074(2)o, Z = 4; for 4, a = 6.8397(2), b = 12.9756(5), c = 15.8216(6) Å, α = 90.833(3), β = 95.949(3), γ = 92.505(3)o, Z = 4; for 5, a = 7.0529(3), b = 13.8487(7), c = 15.6448(6) Å, β = 90.190(6)o, Z = 4; for 6, a = 7.0561(2), b = 15.9311(4), c = 12.2102(3) Å, β = 100.858(3)o, Z = 2. The hydrogen bonding generates structures which are either two-dimensional (2 and 5) or three-dimensional (1, 3, 4 and 6). Compound 6 represents the third reported structure of a salt of 5-sulfosalicylic acid having a dicationic piperazine species.
Resumo:
In the structure of title compound [Cs2(C7H5N2O4)2(H2O)2]n the asymmetric unit comprises two independent and different Cs centres, one nine-coordinate, the other seven coordinate, with both having irregular stereochemistry. The CsO9 coordination comprises oxygen donors from three bridging water molecules, one of which is doubly bridging, three from carboxylate groups, and three from nitro groups, of which two are bidentate chelate bridging. The CsO6N coordination comprises the two bridging water molecules, one amine N donor, one carboxyl O donor and four O donors from nitro groups (two from the chelate bridges). The extension of the dimeric unit gives a two-dimensional polymeric structure which is stabilized by both intra- and intermolecular amine N-H...O and water O-H...O hydrogen bonds to carboxyl O acceptors, as well as inter-ring pi-pi interactions [minimum ring centroid separation, 3.4172(15)A].