377 resultados para structural health monitoring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, very few attempts have been made to explore the structure damage with noise polluted data which is unavoidable effect in real world. The measurement data are contaminated by noise because of test environment as well as electronic devices and this noise tend to give error results with structural damage identification methods. Therefore it is important to investigate a method which can perform better with noise polluted data. This paper introduces a new damage index using principal component analysis (PCA) for damage detection of building structures being able to accept noise polluted frequency response functions (FRFs) as input. The FRF data are obtained from the function datagen of MATLAB program which is available on the web site of the IASC-ASCE (International Association for Structural Control– American Society of Civil Engineers) Structural Health Monitoring (SHM) Task Group. The proposed method involves a five-stage process: calculation of FRFs, calculation of damage index values using proposed algorithm, development of the artificial neural networks and introducing damage indices as input parameters and damage detection of the structure. This paper briefly describes the methodology and the results obtained in detecting damage in all six cases of the benchmark study with different noise levels. The proposed method is applied to a benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring, which was developed in order to facilitate the comparison of various damage identification methods. The illustrated results show that the PCA-based algorithm is effective for structural health monitoring with noise polluted FRFs which is of common occurrence when dealing with industrial structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic emission (AE) analysis is one of the several diagnostic techniques available nowadays for structural health monitoring (SHM) of engineering structures. Some of its advantages over other techniques include high sensitivity to crack growth and capability of monitoring a structure in real time. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). In AE technique, these stress waves are recorded by means of suitable sensors placed on the surface of a structure. Recorded signals are subsequently analysed to gather information about the nature of the source. By enabling early detection of crack growth, AE technique helps in planning timely retrofitting or other maintenance jobs or even replacement of the structure if required. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. Large amount of data is generated during AE testing, hence effective data analysis is necessary, especially for long term monitoring uses. Appropriate analysis of AE data for quantification of damage level is an area that has received considerable attention. Various approaches available for damage quantification for severity assessment are discussed in this paper, with special focus on civil infrastructure such as bridges. One method called improved b-value analysis is used to analyse data collected from laboratory testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal deaths have been a critical issue for women living in rural and remote areas. The need to travel long distances, the shortage of primary care providers such as physicians, specialists and nurses, and the closing of small hospitals have been problems identified in many rural areas. Some research work has been undertaken and a few techniques have been developed to remotely measure the physiological condition of pregnant women through sophisticated ultrasound equipment. There are numerous ways to reduce maternal deaths, and an important step is to select the right approaches to achieving this reduction. One such approach is the provision of decision support systems in rural and remote areas. Decision support systems (DSSs) have already shown a great potential in many health fields. This thesis proposes an ingenious decision support system (iDSS) based on the methodology of survey instruments and identification of significant variables to be used in iDSS using statistical analysis. A survey was undertaken with pregnant women and factorial experimental design was chosen to acquire sample size. Variables with good reliability in any one of the statistical techniques such as Chi-square, Cronbach’s á and Classification Tree were incorporated in the iDSS. The decision support system was developed with significant variables such as: Place of residence, Seeing the same doctor, Education, Tetanus injection, Baby weight, Previous baby born, Place of birth, Assisted delivery, Pregnancy parity, Doctor visits and Occupation. The ingenious decision support system was implemented with Visual Basic as front end and Microsoft SQL server management as backend. Outcomes of the ingenious decision support system include advice on Symptoms, Diet and Exercise to pregnant women. On conditional system was sent and validated by the gynaecologist. Another outcome of ingenious decision support system was to provide better pregnancy health awareness and reduce long distance travel, especially for women in rural areas. The proposed system has qualities such as usefulness, accuracy and accessibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suspension bridges meet the steadily growing demand for lighter and longer bridges in today’s infrastructure systems. These bridges are designed to have long life spans, but with age, their main cables and hangers could suffer from corrosion and fatigue. There is a need for a simple and reliable procedure to detect and locate such damage, so that appropriate retrofitting can be carried out to prevent bridge failure. Damage in a structure causes changes in its properties (mass, damping and stiffness) which in turn will cause changes in its vibration characteristics (natural frequencies, modal damping and mode shapes). Methods based on modal flexibility, which depends on both the natural frequencies and mode shapes, have the potential for damage detection. They have been applied successfully to beam and plate elements, trusses and simple structures in reinforced concrete and steel. However very limited applications for damage detection in suspension bridges have been identified to date. This paper examines the potential of modal flexibility methods for damage detection and localization of a suspension bridge under different damage scenarios in the main cables and hangers using numerical simulation techniques. Validated finite element model (FEM) of a suspension bridge is used to acquire mass normalized mode shape vectors and natural frequencies at intact and damaged states. Damage scenarios will be simulated in the validated FE models by varying stiffness of the damaged structural members. The capability of damage index based on modal flexibility to detect and locate damage is evaluated. Results confirm that modal flexibility based methods have the ability to successfully identify damage in suspension bridge main cables and hangers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural identification (St-Id) can be considered as the process of updating a finite element (FE) model of a structural system to match the measured response of the structure. This paper presents the St-Id of a laboratory-based steel through-truss cantilevered bridge with suspended span. There are a total of 600 degrees of freedom (DOFs) in the superstructure plus additional DOFs in the substructure. The St-Id of the bridge model used the modal parameters from a preliminary modal test in the objective function of a global optimisation technique using a layered genetic algorithm with patternsearch step (GAPS). Each layer of the St-Id process involved grouping of the structural parameters into a number of updating parameters and running parallel optimisations. The number of updating parameters was increased at each layer of the process. In order to accelerate the optimisation and ensure improved diversity within the population, a patternsearch step was applied to the fittest individuals at the end of each generation of the GA. The GAPS process was able to replicate the mode shapes for the first two lateral sway modes and the first vertical bending mode to a high degree of accuracy and, to a lesser degree, the mode shape of the first lateral bending mode. The mode shape and frequency of the torsional mode did not match very well. The frequencies of the first lateral bending mode, the first longitudinal mode and the first vertical mode matched very well. The frequency of the first sway mode was lower and that of the second sway mode was higher than the true values, indicating a possible problem with the FE model. Improvements to the model and the St-Id process will be presented at the upcoming conference and compared to the results presented in this paper. These improvements will include the use of multiple FE models in a multi-layered, multi-solution, GAPS St-Id approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic emission (AE) technique is a popular tool used for structural health monitoring of civil, mechanical and aerospace structures. It is a non-destructive method based on rapid release of energy within a material by crack initiation or growth in the form of stress waves. Recording of these waves by means of sensors and subsequent analysis of the recorded signals convey information about the nature of the source. Ability to locate the source of stress waves is an important advantage of AE technique; but as AE waves travel in various modes and may undergo mode conversions, understanding of the modes (‘modal analysis’) is often necessary in order to determine source location accurately. This paper presents results of experiments aimed at finding locations of artificial AE sources on a thin plate and identifying wave modes in the recorded signal waveforms. Different source locating techniques will be investigated and importance of wave mode identification will be explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modal strain energy method, which depends on the vibration characteristics of the structure, has been reasonably successful in identifying and localising damage in the structure. However, existing strain energy methods require the first few modes to be measured to provide meaningful damage detection. Use of individual modes with existing strain energy methods may indicate false alarms or may not detect the damage at or near the nodal points. This paper proposes a new modal strain energy based damage index which can detect and localize the damage using any one of the modes measured and illustrates its application for beam structures. It becomes evident that the proposed strain energy based damage index also has potential for damage quantification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic computer simulation techniques are used to develop and apply a multi-criteria procedure, incorporating changes in natural frequencies, modal flexibility and the modal strain energy, for damage localisation in beams and plates. Numerically simulated modal data obtained through finite element analyses are used to develop algorithms based on changes of modal flexibility and modal strain energy before and after damage and used as the indices for assessment of the state of structural health. The proposed procedure is illustrated through its application to flexural members under different damage scenarios and the results confirm its feasibility for damage assessment.