376 resultados para starch pasting properties


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times, light gauge cold-formed steel sections have been used extensively as primary load bearing structural members in many applications in the building industry. Fire safety design of structures using such sections has therefore become more important. Deterioration of mechanical properties of yield stress and elasticity modulus is considered the most important factor affecting the performance of steel structures in fires. Hence there is a need to fully understand the mechanical properties of light gauge cold-formed steels at elevated temperatures. A research project based on experimental studies was therefore undertaken to investigate the deterioration of mechanical properties of light gauge cold-formed steels. Tensile coupon tests were undertaken to determine the mechanical properties of these steels made of both low and high strength steels and thicknesses of 0.60, 0.80 and 0.95 mm at temperatures ranging from 20 to 800ºC. Test results showed that the currently available reduction factors are unsafe to use in the fire safety design of cold-formed steel structures. Therefore new predictive equations were developed for the mechanical properties of yield strength and elasticity modulus at elevated temperatures. This paper presents the details of the experimental study, and the results including the developed equations. It also includes details of a stress-strain model for light gauge cold-formed steels at elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rationale for the present study was to develop porous CaP/silk composite scaffolds with a CaP-phase distribution and pore architecture better suited to facilitate osteogenic properties of human bone mesenchymal stromal cells (BMSCs) and in vivo bone formation abilities. This was achieved by first preparing CaP/silk hybrid powders which were then incorporated into silk to obtain uniform CaP/silk composite scaffolds, by means of a freeze-drying method. The composition, microstructure and mechanical properties of the CaP/silk composite scaffolds were ascertained by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), scanning electron microscope (SEM) and a universal mechanical testing machine. BMSCs were cultured in these scaffolds and cell proliferation analyzed by confocal microscopy and MTS assay. Alkaline phosphatase (ALP) activity and osteogenic gene expression were assayed to determine if osteogenic differentiation had taken place. A calvarial defect model in SCID mice was used to determine the in vivo bone forming ability of the hybrid CaP/silk scaffolds. Our results showed that incorporating the hybrid CaP/silk powders into silk scaffolds improved both pore structure architecture and distribution of CaP powders in the composite scaffolds. By incorporating the CaP phase into silk scaffolds in vitro osteogenic differentiation of BMSCs was enhanced and there was increased in vivo cancellous bone formation. Here we report a method with which to prepare Ca/P composite scaffolds with a pore structure and Ca/P distribution better suited to facilitate BMSC differentiation and bone formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microsphere systems with the ideal properties for bone regeneration need to be bioactive, and at the same time possess the capacity for controlled protein/drug-delivery; however, the current crop of microsphere system fails to fulfill these properties. The aim of this study was to develop a novel protein-delivery system of bioactive mesoporous glass (MBG) microspheres by a biomimetic method through controlling the density of apatite on the surface of microspheres, for potential bone tissue regeneration. MBG microspheres were prepared by using the method of alginate cross-linking with Ca2+ ions. The cellular bioactivity of MBG microspheres was evaluated by investigating the proliferation and attachment of bone marrow stromal cell (BMSC). The loading efficiency and release kinetics of bovine serum albumin (BSA) on MBG microspheres were investigated after coprecipitating with biomimetic apatite in simulated body fluids (SBF). The results showed that MBG microspheres supported BMSC attachment and the Si containing ionic products from MBG microspheres stimulated BMSCs proliferation. The density of apatite on MBG microspheres increased with the length of soaking time in SBF. BSA-loading efficiency of MBG was significantly enhanced by co-precipitating with apatite. Furthermore, the loading efficiency and release kinetics of BSA could be controlled by controlling the density of apatite formed on MBG microspheres. Our results suggest that MBG microspheres are a promising protein-delivery system as a filling material for bone defect healing and regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Altered mechanical properties of the heel pad have been implicated in the development of plantar heel pain. However, the in vivo properties of the heel pad during gait remain largely unexplored in this cohort. The aim of the current study was to characterise the bulk compressive properties of the heel pad in individuals with and without plantar heel pain while walking. ---------- Methods: The sagittal thickness and axial compressive strain of the heel pad were estimated in vivo from dynamic lateral foot radiographs acquired from nine subjects with unilateral plantar heel pain and an equivalent number of matched controls, while walking at their preferred speed. Compressive stress was derived from simultaneously acquired plantar pressure data. Principal viscoelastic parameters of the heel pad, including peak strain, secant modulus and energy dissipation (hysteresis), were estimated from subsequent stress–strain curves.---------- Findings: There was no significant difference in loaded and unloaded heel pad thickness, peak stress, peak strain, or secant and tangent modulus in subjects with and without heel pain. However, the fat pad of symptomatic feet had a significantly lower energy dissipation ratio (0.55 ± 0.17 vs. 0.69 ± 0.08) when compared to asymptomatic feet (P < .05).---------- Interpretation: Plantar heel pain is characterised by reduced energy dissipation ratio of the heel pad when measured in vivo and under physiologically relevant strain rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need in industry for a commodity polyethylene film with controllable degradation properties that will degrade in an environmentally neutral way, for applications such as shopping bags and packaging film. Additives such as starch have been shown to accelerate the degradation of plastic films, however control of degradation is required so that the film will retain its mechanical properties during storage and use, and then degrade when no longer required. By the addition of a photocatalyst it is hoped that polymer film will breakdown with exposure to sunlight. Furthermore, it is desired that the polymer film will degrade in the dark, after a short initial exposure to sunlight. Research has been undertaken into the photo- and thermo-oxidative degradation processes of 25 ìm thick LLDPE (linear low density polyethylene) film containing titania from different manufacturers. Films were aged in a suntest or in an oven at 50 °C, and the oxidation product formation was followed using IR spectroscopy. Degussa P25, Kronos 1002, and various organic-modified and doped titanias of the types Satchleben Hombitan and Hunstsman Tioxide incorporated into LLDPE films were assessed for photoactivity. Degussa P25 was found to be the most photoactive with UVA and UVC exposure. Surface modification of titania was found to reduce photoactivity. Crystal phase is thought to be among the most important factors when assessing the photoactivity of titania as a photocatalyst for degradation. Pre-irradiation with UVA or UVC for 24 hours of the film containing 3% Degussa P25 titania prior to aging in an oven resulted in embrittlement in ca. 200 days. The multivariate data analysis technique PCA (principal component analysis) was used as an exploratory tool to investigate the IR spectral data. Oxidation products formed in similar relative concentrations across all samples, confirming that titania was catalysing the oxidation of the LLDPE film without changing the oxidation pathway. PCA was also employed to compare rates of degradation in different films. PCA enabled the discovery of water vapour trapped inside cavities formed by oxidation by titania particles. Imaging ATR/FTIR spectroscopy with high lateral resolution was used in a novel experiment to examine the heterogeneous nature of oxidation of a model polymer compound caused by the presence of titania particles. A model polymer containing Degussa P25 titania was solvent cast onto the internal reflection element of the imaging ATR/FTIR and the oxidation under UVC was examined over time. Sensitisation of 5 ìm domains by titania resulted in areas of relatively high oxidation product concentration. The suitability of transmission IR with a synchrotron light source to the study of polymer film oxidation was assessed as the Australian Synchrotron in Melbourne, Australia. Challenges such as interference fringes and poor signal-to-noise ratio need to be addressed before this can become a routine technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To demonstrate properties of the International Classification of the External Cause of Injury (ICECI) as a tool for use in injury prevention research. Methods: The Childhood Injury Prevention Study (CHIPS) is a prospective longitudinal follow up study of a cohort of 871 children 5–12 years of age, with a nested case crossover component. The ICECI is the latest tool in the International Classification of Diseases (ICD) family and has been designed to improve the precision of coding injury events. The details of all injury events recorded in the study, as well as all measured injury related exposures, were coded using the ICECI. This paper reports a substudy on the utility and practicability of using the ICECI in the CHIPS to record exposures. Interrater reliability was quantified for a sample of injured participants using the Kappa statistic to measure concordance between codes independently coded by two research staff. Results: There were 767 diaries collected at baseline and event details from 563 injuries and exposure details from injury crossover periods. There were no event, location, or activity details which could not be coded using the ICECI. Kappa statistics for concordance between raters within each of the dimensions ranged from 0.31 to 0.93 for the injury events and 0.94 and 0.97 for activity and location in the control periods. Discussion: This study represents the first detailed account of the properties of the ICECI revealed by its use in a primary analytic epidemiological study of injury prevention. The results of this study provide considerable support for the ICECI and its further use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major challenge of the 21st century will be to generate transportation fuels using feedstocks such as lignocellulosic waste materials as a substitute for existing fossil and nuclear fuels. The advantages of lignocellulosics as a feedstock material are that they are abundant, sustainable and carbon-neutral. To improve the economics of producing liquid transportation fuels from lignocellulosic biomass, the development of value-added products from lignin, a major component of lignocellulosics, is necessary. Lignins produced from black liquor through the fractionation of sugarcane bagasse with soda and organic solvents have been characterised by physical, chemical and thermal means. The soda lignin fractions have different physico-chemical and thermal properties from one another. Some of these properties have been compared to bagasse lignin extracted with aqueous ethanol.