68 resultados para split-plot designs
Resumo:
This project was an observational study of outpatients following lower limb surgical procedures for removal of skin cancers. Findings highlight a previously unreported high surgical site failure rate. Results also identified four potential risk factors (increasing age, presence of leg pain, split skin graft and haematoma) which negatively impact on surgical site healing in this population.
Resumo:
Monitoring stream networks through time provides important ecological information. The sampling design problem is to choose locations where measurements are taken so as to maximise information gathered about physicochemical and biological variables on the stream network. This paper uses a pseudo-Bayesian approach, averaging a utility function over a prior distribution, in finding a design which maximizes the average utility. We use models for correlations of observations on the stream network that are based on stream network distances and described by moving average error models. Utility functions used reflect the needs of the experimenter, such as prediction of location values or estimation of parameters. We propose an algorithmic approach to design with the mean utility of a design estimated using Monte Carlo techniques and an exchange algorithm to search for optimal sampling designs. In particular we focus on the problem of finding an optimal design from a set of fixed designs and finding an optimal subset of a given set of sampling locations. As there are many different variables to measure, such as chemical, physical and biological measurements at each location, designs are derived from models based on different types of response variables: continuous, counts and proportions. We apply the methodology to a synthetic example and the Lake Eacham stream network on the Atherton Tablelands in Queensland, Australia. We show that the optimal designs depend very much on the choice of utility function, varying from space filling to clustered designs and mixtures of these, but given the utility function, designs are relatively robust to the type of response variable.
Resumo:
In this paper we present a unified sequential Monte Carlo (SMC) framework for performing sequential experimental design for discriminating between a set of models. The model discrimination utility that we advocate is fully Bayesian and based upon the mutual information. SMC provides a convenient way to estimate the mutual information. Our experience suggests that the approach works well on either a set of discrete or continuous models and outperforms other model discrimination approaches.
Resumo:
Dose-finding trials are a form of clinical data collection process in which the primary objective is to estimate an optimum dose of an investigational new drug when given to a patient. This thesis develops and explores three novel dose-finding design methodologies. All design methodologies presented in this thesis are pragmatic. They use statistical models, incorporate clinicians' prior knowledge efficiently, and prematurely stop a trial for safety or futility reasons. Designing actual dose-finding trials using these methodologies will minimize practical difficulties, improve efficiency of dose estimation, be flexible to stop early and reduce possible patient discomfort or harm.
Resumo:
Aim Evidence linking the accumulation of exotic species to the suppression of native diversity is equivocal, often relying on data from studies that have used different methods. Plot-level studies often attribute inverse relationships between native and exotic diversity to competition, but regional abiotic filters, including anthropogenic influences, can produce similar patterns.We seek to test these alternatives using identical scale-dependent sampling protocols in multiple grasslands on two continents. Location Thirty-two grassland sites in North America and Australia. Methods We use multiscale observational data, collected identically in grain and extent at each site, to test the association of local and regional factors with the plot-level richness and abundance of native and exotic plants. Sites captured environmental and anthropogenic gradients including land-use intensity, human population density, light and soil resources, climate and elevation. Site selection occurred independently of exotic diversity, meaning that the numbers of exotic species varied randomly thereby reducing potential biases if only highly invaded sites were chosen. Results Regional factors associated directly or indirectly with human activity had the strongest associations with plot-level diversity. These regional drivers had divergent effects: urban-based economic activity was associated with high exotic : native diversity ratios; climate- and landscape-based indicators of lower human population density were associated with low exotic : native ratios. Negative correlations between plot-level native and exotic diversity, a potential signature of competitive interactions, were not prevalent; this result did not change along gradients of productivity or heterogeneity. Main conclusion We show that plot-level diversity of native and exotic plants are more consistently associatedwith regional-scale factors relating to urbanization and climate suitability than measures indicative of competition. These findings clarify the long-standing difficulty in resolving drivers of exotic diversity using single-factor mechanisms, suggesting that multiple interacting anthropogenic-based processes best explain the accumulation of exotic diversity in modern landscapes.
Resumo:
Dose-finding designs estimate the dose level of a drug based on observed adverse events. Relatedness of the adverse event to the drug has been generally ignored in all proposed design methodologies. These designs assume that the adverse events observed during a trial are definitely related to the drug, which can lead to flawed dose-level estimation. We incorporate adverse event relatedness into the so-called continual reassessment method. Adverse events that have ‘doubtful’ or ‘possible’ relationships to the drug are modelled using a two-parameter logistic model with an additive probability mass. Adverse events ‘probably’ or ‘definitely’ related to the drug are modelled using a cumulative logistic model. To search for the maximum tolerated dose, we use the maximum estimated toxicity probability of these two adverse event relatedness categories. We conduct a simulation study that illustrates the characteristics of the design under various scenarios. This article demonstrates that adverse event relatedness is important for improved dose estimation. It opens up further research pathways into continual reassessment design methodologies.
Resumo:
This paper presents a framework for the design of a joint motion controller and a control allocation strategy for dynamic positioning of marine vehicles. The key aspects of the proposed designs are a systematic approach to deal with actuator saturation and to inform the motion controller about saturation. The proposed system uses a mapping that translates the actuator constraint sets into constraint sets at the motion controller level. Hence, while the motion controller addresses the constraints, the control allocation algorithm can solve an unconstrained optimisation problem. The constrained control design is approached using a multivariable anti-wind-up strategy for strictly proper controllers. This is applicable to the implementation of PI and PID type of motion controllers.
Resumo:
This chapter investigates a variety of water quality assessment tools for reservoirs with balanced/unbalanced monitoring designs and focuses on providing informative water quality assessments to ensure decision-makers are able to make risk-informed management decisions about reservoir health. In particular, two water quality assessment methods are described: non-compliance (probability of the number of times the indicator exceeds the recommended guideline) and amplitude (degree of departure from the guideline). Strengths and weaknesses of current and alternative water quality methods will be discussed. The proposed methodology is particularly applicable to unbalanced designs with/without missing values and reflects the general conditions and is not swayed too heavily by the occasional extreme value (very high or very low quality). To investigate the issues in greater detail, we use as a case study, a reservoir within South-East Queensland (SEQ), Australia. The purpose here is to obtain an annual score that reflected the overall water quality, temporally, spatially and across water quality indicators for each reservoir.
Resumo:
The paper provides a systematic approach to designing the laboratory phase of a multiphase experiment, taking into account previous phases. General principles are outlined for experiments in which orthogonal designs can be employed. Multiphase experiments occur widely, although their multiphase nature is often not recognized. The need to randomize the material produced from the first phase in the laboratory phase is emphasized. Factor-allocation diagrams are used to depict the randomizations in a design and the use of skeleton analysis-of-variance (ANOVA) tables to evaluate their properties discussed. The methods are illustrated using a scenario and a case study. A basis for categorizing designs is suggested. This article has supplementary material online.
Resumo:
PURPOSE To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. MATERIALS AND METHODS Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s2 ) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. RESULTS The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 +/- 0.88 sec). CONCLUSION The hemodynamic contribution to DfMRI may increase with the use of block designs.
Resumo:
Optimisation is a fundamental step in the turbine design process, especially in the development of non-classical designs of radial-inflow turbines working with high-density fluids in low-temperature Organic Rankine Cycles (ORCs). The present work discusses the simultaneous optimisation of the thermodynamic cycle and the one-dimensional design of radial-inflow turbines. In particular, the work describes the integration between a 1D meanline preliminary design code adapted to real gases and the performance estimation approach for radial-inflow turbines in an established ORC cycle analysis procedure. The optimisation approach is split in two distinct loops; the inner operates on the 1D design based on the parameters received from the outer loop, which optimises the thermodynamic cycle. The method uses parameters including brine flow rate, temperature and working fluid, shifting assumptions such as head and flow coefficients into the optimisation routine. The discussed design and optimisation method is then validated against published benchmark cases. Finally, using the same conditions, the coupled optimisation procedure is extended to the preliminary design of a radial-inflow turbine with R143a as working fluid in realistic geothermal conditions and compared against results from commercially-available software RITAL from Concepts-NREC.
Principles in the design of multiphase experiments with a later laboratory phase: Orthogonal designs
Resumo:
There is a wide range of potential study designs for intervention studies to decrease nosocomial infections in hospitals. The analysis is complex due to competing events, clustering, multiple timescales and time-dependent period and intervention variables. This review considers the popular pre-post quasi-experimental design and compares it with randomized designs. Randomization can be done in several ways: randomization of the cluster [intensive care unit (ICU) or hospital] in a parallel design; randomization of the sequence in a cross-over design; and randomization of the time of intervention in a stepped-wedge design. We introduce each design in the context of nosocomial infections and discuss the designs with respect to the following key points: bias, control for nonintervention factors, and generalizability. Statistical issues are discussed. A pre-post-intervention design is often the only choice that will be informative for a retrospective analysis of an outbreak setting. It can be seen as a pilot study with further, more rigorous designs needed to establish causality. To yield internally valid results, randomization is needed. Generally, the first choice in terms of the internal validity should be a parallel cluster randomized trial. However, generalizability might be stronger in a stepped-wedge design because a wider range of ICU clinicians may be convinced to participate, especially if there are pilot studies with promising results. For analysis, the use of extended competing risk models is recommended.
Resumo:
This article considers the risk of disclosure in linked databases when statistical analysis of micro-data is permitted. The risk of disclosure needs to be balanced against the utility of the linked data. The current work specifically considers the disclosure risks in permitting regression analysis to be performed on linked data. A new attack based on partitioning of the database is presented.