92 resultados para soil moisture content
Resumo:
Since land use change can have significant impacts on regional biogeochemistry, we investigated how conversion of forest and cultivation to pasture impact soil C and N cycling. In addition to examining total soil C, we isolated soil physiochemical C fractions in order to understand the mechanisms by which soil C is sequestered or lost. Total soil C did not change significantly over time following conversion from forest, though coarse (250-2,000 mum) particulate organic matter C increased by a factor of 6 immediately after conversion. Aggregate mean weight diameter was reduced by about 50% after conversion, but values were like those under forest after 8 years under pasture. Samples collected from a long-term pasture that was converted from annual cultivation more than 50 years ago revealed that some soil physical properties negatively impacted by cultivation were very slow to recover. Finally, our results indicate that soil macroaggregates turn over more rapidly under pasture than under forest and are less efficient at stabilizing soil C, whereas microaggregates from pasture soils stabilize a larger concentration of C than forest microaggregates. Since conversion from forest to pasture has a minimal impact on total soil C content in the Piedmont region of Virginia, United States, a simple C stock accounting system could use the same base soil C stock value for either type of land use. However, since the effects of forest to pasture conversion are a function of grassland management following conversion, assessments of C sequestration rates require activity data on the extent of various grassland management practices.
Resumo:
Soil respiration in semiarid ecosystems responds positively to temperature, but temperature is just one of many factors controlling soil respiration. Soil moisture can have an overriding influence, particularly during the dry/warm portions of the year. The purpose of this project was to evaluate the influence of soil moisture on the relationship between temperature and soil respiration. Soil samples collected from a range of sites arrayed across a climatic gradient were incubated under varying temperature and moisture conditions. Additionally, we evaluated the impact of substrate quality on short-term soil respiration responses by carrying out substrate-induced respiration assessments for each soil at nine different temperatures. Within all soil moisture regimes, respiration rates always increased with increase in temperature. For a given temperature, soil respiration increased by half (on average) across moisture regimes; Q(10) values declined with soil moisture from 3.2 (at -0.03 MPa) to 2.1 (-1.5 MPa). In summary, soil respiration was generally directly related to temperature, but responses were ameliorated with decrease in soil moisture. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cultivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration increased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 yr after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.11 3.04 Mg C.ha(-1) yr(-1), with a mean of 0.54 Mg C.ha(-1).yr(-1) and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.
Resumo:
Plants subjected to increases in the supply of resource(s) limiting growth may allocate more of those resources to existing leaves, increasing photosynthetic capacity, and/or to production of more leaves, increasing whole-plant photosynthesis. The responses of three populations of the alpine willow, Salix glauca, growing along an alpine topographic sequence representing a gradient in soil moisture and organic matter, and thus potential N supply, to N amendments, were measured over two growing seasons, to elucidate patterns of leaf versus shoot photosynthetic responses. Leaf-(foliar N, photosynthesis rates, photosynthetic N-use efficiency) and shoot-(leaf area per shoot, number of leaves per shoot, stem weight, N resorption efficiency) level measurements were made to examine the spatial and temporal variation in these potential responses to increased N availability. The predominant response of the willows to N fertilization was at the shoot-level, by production of greater leaf area per shoot. Greater leaf area occurred due to production of larger leaves in both years of the experiment and to production of more leaves during the second year of fertilization treatment. Significant leaf-level photosynthetic response occurred only during the first year of treatment, and only in the dry meadow population. Variation in photosynthesis rates was related more to variation in stomatal conductance than to foliar N concentration. Stomatal conductance in turn was significantly related to N fertilization. Differences among the populations in photosynthesis, foliar N, leaf production, and responses to N fertilization indicate N availability may be lowest in the dry meadow population, and highest in the ridge population. This result is contrary to the hypothesis that a gradient of plant available N corresponds with a snowpack/topographic gradient.
Resumo:
A number of instrumented laboratory-scale soil embankment slopes were subjected to artificial rainfall until they failed. The factor of safety of the slope based on real-time measurements of pore-water pressure (suction) and laboratory measured soil properties were calculated as the rainfall progressed. Based on the experiment measurements and slope stability analysis, it was observed that slope displacement measurements can be used to warn the slope failure more accurately. Further, moisture content/pore-water pressure measurements near the toe of the slope and the real-time factor of safety can also be used for prediction of rainfall-induced embankment failures with adequate accuracy.
Resumo:
Failure of buried pipes due to reactive soil movement (e.g. shrinking/swelling) is a common problem for water and gas pipe networks in Australia and the world. Soil movement is closely related to seasonal climatic change, and particularly to the moisture content of soil. Although some research has been carried out to understand the effect of freezing and thawing of soils and temperature effects in colder climates, very limited research has been undertaken to examine the possible failure mechanisms of pipes buried in reactive soils. This study reports the responses of a 2 m long polyethylene pipe buried in reactive clay in a box under laboratory conditions. The soil and pipe movements were measured as the soil was wetted from the bottom of the box. It was observed that the pipe underwent substantial deformation as the soil swelled with increase of the moisture content. The results are explained with a simplified numerical analysis.
Resumo:
This paper describes the development and testing of a novel mill design to reduce the moisture content of bagasse. It takes advantage of gravity to separate juice from bagasse by pushing bagasse upwards while juice drains downwards under gravity. The potential of the design to reduce bagasse moisture content has not been adequately established. The prototype mill had limited power available that prevented typical delivery nip compactions from being achieved. Tests conducted did show a reduction in bagasse moisture but that moisture reduction is less than expected under ideal conditions. Work on the mill design has ceased, at least for the foreseeable future. The design does have potential to reduce bagasse moisture content but presents some engineering challenges to establish a reliable, low maintenance design alternative.
Resumo:
Environmental Burkholderia pseudomallei isolated from sandy soil at Castle Hill, Townsville, in the dry tropic region of Queensland, Australia, was inoculated into sterile-soil laboratory microcosms subjected to variable soil moisture. Survival and sublethal injury of the B. pseudomallei strain were monitored by recovery using culture-based methods. Soil extraction buffer yielded higher recoveries as an extraction agent than sterile distilled water. B. pseudomallei was not recoverable when inoculated into desiccated soil but remained recoverable from moist soil subjected to 91 days desiccation and showed a growth response to increased soil moisture over at least 113 days. Results indicate that endemic dry tropic soil may act as a reservoir during the dry season, with an increase in cell number and potential for mobilization from soil into water in the wet season.
Resumo:
It has been predicted that sea level will rise about 0.8 m by 2100. Consequently, seawater can intrude into the coastal aquifers and change the level of groundwater table. A raise in groundwater table due to seawater intrusion threats the coastal infrastructure such as road pavements. The mechanical properties of subgrade materials will change due to elevated rise of groundwater table, leading to pavement weakening and decreasing the subgrade strength and stiffness. This paper presents an assessment of the vulnerability of subgrade in coastal areas to change in groundwater table due to sea-level rise. A simple bathtub approach is applied for estimating the groundwater level changes according to sea-level rise. Then the effect of groundwater level changes on the soil water content (SWC) of a single column of fine-sand soil is simulated using MIKE SHE. The impact of an increase in moisture content on subgrade strength/stiffness is assessed for a number of scenarios.
Resumo:
The effect of a change of tillage and crop residue management practice on the chemical and micro-biological properties of a cereal-producing red duplex soil was investigated by superimposing each of three management practices (CC: conventional cultivation, stubble burnt, crop conventionally sown; DD: direct-drilling, stubble retained, no cultivation, crop direct-drilled; SI: stubble incorporated with a single cultivation, crop conventionally sown), for a 3-year period on plots previously managed with each of the same three practices for 14 years. A change from DD to CC or SI practice resulted in a significant decline, in the top 0-5 cm of soil, in organic C, total N, electrical conductivity, NH4-N, NO3-N, soil moisture holding capacity, microbial biomass and CO2 respiration as well as a decline in the microbial quotient (the ratio of microbial biomass C to organic C; P <0.05). In contrast, a change from SI to DD or CC practice or a change from CC to DD or SI practice had only negligible impact on soil chemical properties (P >0.05). However, there was a significant increase in microbial biomass and the microbial quotient in the top 0-5 cm of soil following the change from CC to DD or SI practice and with the change from SI to DD practice (P <0.05). Analysis of ester-linked fatty acid methyl esters (EL-FAMEs) extracted from the 0- to 5-cm and 5- to 10-cm layers of the soils of the various treatments detected changes in the FAME profiles following a change in tillage practice. A change from DD practice to SI or CC practice was associated with a significant decline in the ratio of fungal to bacterial fatty acids in the 0- to 5-cm soil (P <0.05). The results show that a change in tillage practice, particularly the cultivation of a previously minimum-tilled (direct-drilled) soil, will result in significant changes in soil chemical and microbiological properties within a 3-year period. They also show that soil microbiological properties are sensitive indicators of a change in tillage practice.
Resumo:
In the Australian sugar industry, sugar cane is smashed into a straw like material by hammers before being squeezed between large rollers to extract the sugar juice. The straw like material is initially called prepared cane and then bagasse as it passes through successive roller milling units. The sugar cane materials are highly compressible, have high moisture content, are fibrous, and they resemble some peat soils in both appearance and mechanical behaviour. A promising avenue to improve the performance of milling units for increased throughput and juice extraction, and to reduce costs is by modelling of the crushing process. To achieve this, it is believed necessary that milling models should be able to reproduce measured bagasse behaviour. This investigation sought to measure the mechanical (compression, shear, and volume) behaviour of prepared cane and bagasse, to identify limitations in currently used material models, and to progress towards a material model that can predict bagasse behaviour adequately. Tests were carried out using a modified direct shear test equipment and procedure at most of the large range of pressures occurring in the crushing process. The investigation included an assessment of the performance of the direct shear test for measuring bagasse behaviour. The assessment was carried out using finite element modelling. It was shown that prepared cane and bagasse exhibited critical state behavior similar to that of soils and the magnitudes of material parameters were determined. The measurements were used to identify desirable features for a bagasse material model. It was shown that currently used material models had major limitations for reproducing bagasse behaviour. A model from the soil mechanics literature was modified and shown to achieve improved reproduction while using magnitudes of material parameters that better reflected the measured values. Finally, a typical three roller mill pressure feeder configuration was modelled. The predictions and limitations were assessed by comparison to measured data from a sugar factory.
Resumo:
Changes in global climate and land use affect important prolesses from evapotranspiration and groundwater recharge to carbon storage and biochemical cycling. Near surface soil moisture is pivotal to understand the consequences of these changes. However, the dynamic interactions between vegetation and soil moisture remain largely unresolved because it is difficult to monitor and quantify subsurface hydrologic fluxes at relevant scales. Here we use electrical resistivity to monitor the influence of climate and vegetation on root-zone moisture, bridging the gap between remotely-sensed and in-situ point measurements. Our research quantifies large seasonal differences in root-zone moisture dynamics for a forest-grassland ecotone. We found large differences in effective rooting depth and moisture distributions for the two vegetation types. Our results highlight the likely impacts of land transformations on groun ter recharge, streamflow, and land-atmosphere exchanges.
Resumo:
Drying has been extensively used as a food preservation procedure. The longer life attained by drying is however accompanied by huge energy consumption and deterioration of quality. Moisture diffusivity is an important factor that is considered essential to understand for design, analysis, and optimization of drying processes for food and other materials. Without an accurate value of moisture diffusivity, drying kinetics, energy consumption, quality attributes such as shrinkage, texture, and microstructure cannot be predicted properly. However, moisture diffusivities differ due to variation of composition and microstructure of foodstuff and drying variables. For a particular food, it changes with many factors including moisture content, water holding capacity, process variables and physiochemical attributes of food. Published information on moisture diffusivities of banana is inadequate and sometimes inconsistent due to lack of precise repeatable analysis techniques. In this work, the effective moisture diffusivity of banana was determined by Thermogravimetric Analysis (TGA), which ensures precise measurements and reproduction of experiments. A TGA Q500 V20.13 Build 39 was deployed to obtain the drying curve of the food material. It was found that effective moisture diffusivity ranged from 6.63 x10-10 to 1.03 x10-9 and 1.34 x10-10 to 6.60 x10-10 for isothermal at 70 0C and non-isothermal process respectively.These values are consistent with the value of moisture diffusivity found in the literature.
Resumo:
The microbial mediated production of nitrous oxide (N2O) and its reduction to dinitrogen (N2) via denitrification represents a loss of nitrogen (N) from fertilised agro-ecosystems to the atmosphere. Although denitrification has received great interest by biogeochemists in the last decades, the magnitude of N2lossesand related N2:N2O ratios from soils still are largely unknown due to methodical constraints. We present a novel 15N tracer approach, based on a previous developed tracer method to study denitrification in pure bacterial cultures which was modified for the use on soil incubations in a completely automated laboratory set up. The method uses a background air in the incubation vessels that is replaced with a helium-oxygen gas mixture with a 50-fold reduced N2 background (2 % v/v). This method allows for a direct and sensitive quantification of the N2 and N2O emissions from the soil with isotope-ratio mass spectrometry after 15N labelling of denitrification N substrates and minimises the sensitivity to the intrusion of atmospheric N2 at the same time. The incubation set up was used to determine the influence of different soil moisture levels on N2 and N2O emissions from a sub-tropical pasture soil in Queensland/Australia. The soil was labelled with an equivalent of 50 μg-N per gram dry soil by broadcast application of KNO3solution (4 at.% 15N) and incubated for 3 days at 80% and 100% water filled pore space (WFPS), respectively. The headspace of the incubation vessel was sampled automatically over 12hrs each day and 3 samples (0, 6, and 12 hrs after incubation start) of headspace gas analysed for N2 and N2O with an isotope-ratio mass spectrometer (DELTA V Plus, Thermo Fisher Scientific, Bremen, Germany(. In addition, the soil was analysed for 15N NO3- and NH4+ using the 15N diffusion method, which enabled us to obtain a complete N balance. The method proved to be highly sensitive for N2 and N2O emissions detecting N2O emissions ranging from 20 to 627 μN kg-1soil-1hr-1and N2 emissions ranging from 4.2 to 43 μN kg-1soil-1hr-1for the different treatments. The main end-product of denitrification was N2O for both water contents with N2 accounting for 9% and 13% of the total denitrification losses at 80% and 100%WFPS, respectively. Between 95-100% of the added 15N fertiliser could be recovered. Gross nitrification over the 3 days amounted to 8.6 μN g-1 soil-1 and 4.7 μN g-1 soil-1, denitrification to 4.1 μN g-1 soil-1 and 11.8 μN g-1 soil-1at 80% and 100%WFPS, respectively. The results confirm that the tested method allows for a direct and highly sensitive detection of N2 and N2O fluxes from soils and hence offers a sensitive tool to study denitrification and N turnover in terrestrial agro-ecosystems.
Resumo:
Knowledge of particle emission characteristics associated with forest fires and in general, biomass burning, is becoming increasingly important due to the impact of these emissions on human health. Of particular importance is developing a better understanding of the size distribution of particles generated from forest combustion under different environmental conditions, as well as provision of emission factors for different particle size ranges. This study was aimed at quantifying particle emission factors from four types of wood found in South East Queensland forests: Spotted Gum (Corymbia citriodora), Red Gum (Eucalypt tereticornis), Blood Gum (Eucalypt intermedia), and Iron bark (Eucalypt decorticans); under controlled laboratory conditions. The experimental set up included a modified commercial stove connected to a dilution system designed for the conditions of the study. Measurements of particle number size distribution and concentration resulting from the burning of woods with a relatively homogenous moisture content (in the range of 15 to 26 %) and for different rates of burning were performed using a TSI Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 600 nm and a TSI Dust Trak for PM2.5. The results of the study in terms of the relationship between particle number size distribution and different condition of burning for different species show that particle number emission factors and PM2.5 mass emission factors depend on the type of wood and the burning rate; fast burning or slow burning. The average particle number emission factors for fast burning conditions are in the range of 3.3 x 1015 to 5.7 x 1015 particles/kg, and for PM2.5 are in the range of 139 to 217 mg/kg.