510 resultados para sampling methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider estimating the total load from frequent flow data but less frequent concentration data. There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates that minimizes the biases and makes use of informative predictive variables. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized rating-curve approach with additional predictors that capture unique features in the flow data, such as the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and the discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. Forming this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach for two rivers delivering to the Great Barrier Reef, Queensland, Australia. One is a data set from the Burdekin River, and consists of the total suspended sediment (TSS) and nitrogen oxide (NO(x)) and gauged flow for 1997. The other dataset is from the Tully River, for the period of July 2000 to June 2008. For NO(x) Burdekin, the new estimates are very similar to the ratio estimates even when there is no relationship between the concentration and the flow. However, for the Tully dataset, by incorporating the additional predictive variables namely the discounted flow and flow phases (rising or recessing), we substantially improved the model fit, and thus the certainty with which the load is estimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency with which a small beam trawl (1 x 0.5 m mouth) sampled postlarvae and juveniles of tiger prawns Penaeus esculentus and P, semisulcatus at night was estimated in 3 tropical seagrass communities (dominated by Thalassia hemprichii, Syringodium isoetifolium and Enhalus acoroides, respectively) in the shallow waters of the Gulf of Carpentaria in northern Australia. An area of seagrass (40 x 3 m) was enclosed by a net and the beam trawl was repeatedly hand-hauled over the substrate. Net efficiency (q) was calculated using 4 methods: the unweighted Leslie, weighted Leslie, DeLury and Maximum-likelihood (ML) methods. The Maximum-likelihood is the preferred method for estimating efficiency because it makes the fewest assumptions and is not affected by zero catches. The major difference in net efficiencies was between postlarvae (mean ML q +/- 95% confidence limits = 0.66 +/- 0.16) and juveniles of both species (mean q for juveniles in water less than or equal to 1.0 m deep = 0.47 +/- 0.05), i.e. the beam trawl was more efficient at capturing postlarvae than juveniles. There was little difference in net efficiency for P, esculentus between seagrass types (T, hemprichii versus S. isoetifolium), even though the biomass and morphologies of seagrass in these communities differed greatly (biomasses were 54 and 204 g m(-2), respectively). The efficiency of the net appeared to be the same for juveniles of the 2 species in shallow water, but was lower for juvenile P, semisulcatus at high tide when the water was deeper (1.6 to 1.9 m) (0.35 +/- 0.08). The lower efficiency near the time of high tide is possibly because the prawns are more active at high than low tide, and can also escape above the net. Factors affecting net efficiency and alternative methods of estimating net efficiency are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this note, we shortly survey some recent approaches on the approximation of the Bayes factor used in Bayesian hypothesis testing and in Bayesian model choice. In particular, we reassess importance sampling, harmonic mean sampling, and nested sampling from a unified perspective.