103 resultados para regenerating layer
Resumo:
The epithelium of the corneolimbus contains stem cells for regenerating the corneal epithelium. Diseases and injuries affecting the limbus can lead to a condition known as limbal stem cell deficiency (LSCD), which results in loss of the corneal epithelium, and subsequent chronic inflammation and scarring of the ocular surface. Advances in the treatment of LSCD have been achieved through use of cultured human limbal epithelial (HLE) grafts to restore epithelial stem cells of the ocular surface. These epithelial grafts are usually produced by the ex vivo expansion of HLE cells on human donor amniotic membrane (AM), but this is not without limitations. Although AM is the most widely accepted substratum for HLE transplantation, donor variation, risk of disease transfer, and rising costs have led to the search for alternative biomaterials to improve the surgical outcome of LSCD. Recent studies have demonstrated that Bombyx mori silk fibroin (hereafter referred to as fibroin) membranes support the growth of primary HLE cells, and thus this thesis aims to explore the possibility of using fibroin as a biomaterial for ocular surface reconstruction. Optimistically, the grafted sheets of cultured epithelium would provide a replenishing source of epithelial progenitor cells for maintaining the corneal epithelium, however, the HLE cells lose their progenitor cell characteristics once removed from their niche. More severe ocular surface injuries, which result in stromal scarring, damage the epithelial stem cell niche, which subsequently leads to poor corneal re-epithelialisation post-grafting. An ideal solution to repairing the corneal limbus would therefore be to grow and transplant HLE cells on a biomaterial that also provides a means for replacing underlying stromal cells required to better simulate the normal stem cell niche. The recent discovery of limbal mesenchymal stromal cells (L-MSC) provides a possibility for stromal repair and regeneration, and therefore, this thesis presents the use of fibroin as a possible biomaterial to support a three dimensional tissue engineered corneolimbus with both an HLE and underlying L-MSC layer. Investigation into optimal scaffold design is necessary, including adequate separation of epithelial and stromal layers, as well as direct cell-cell contact. Firstly, the attachment, morphology and phenotype of HLE cells grown on fibroin were directly compared to that observed on donor AM, the current clinical standard substrate for HLE transplantation. The production, transparency, and permeability of fibroin membranes were also evaluated in this part of the study. Results revealed that fibroin membranes could be routinely produced using a custom-made film casting table and were found to be transparent and permeable. Attachment of HLE cells to fibroin after 4 hours in serum-free medium was similar to that supported by tissue culture plastic but approximately 6-fold less than that observed on AM. While HLE cultured on AM displayed superior stratification, epithelia constructed from HLE on fibroin maintained evidence of corneal phenotype (cytokeratin pair 3/12 expression; CK3/12) and displayed a comparable number and distribution of ÄNp63+ progenitor cells to that seen in cultures grown on AM. These results confirm the suitability of membranes constructed from silk fibroin as a possible substrate for HLE cultivation. One of the most important aspects in corneolimbal tissue engineering is to consider the reconstruction of the limbal stem cell niche to help form the natural limbus in situ. MSC with similar properties to bone marrow derived-MSC (BM-MSC) have recently been grown from the limbus of the human cornea. This thesis evaluated methods for culturing L-MSC and limbal keratocytes using various serum-free media. The phenotype of resulting cultures was examined using photography, flow cytometry for CD34 (keratocyte marker), CD45 (bone marrow-derived cell marker), CD73, CD90, CD105 (collectively MSC markers), CD141 (epithelial/vascular endothelial marker), and CD271 (neuronal marker), immunocytochemistry (alpha-smooth muscle actin; á-sma), differentiation assays (osteogenesis, adipogenesis and chrondrogenesis), and co-culture experiments with HLE cells. While all techniques supported to varying degrees establishment of keratocyte and L-MSC cultures, sustained growth and serial propagation was only achieved in serum-supplemented medium or the MesenCult-XF„¥ culture system (Stem Cell Technologies). Cultures established in MesenCult-XF„¥ grew faster than those grown in serum-supplemented medium and retained a more optimal MSC phenotype. L-MSC cultivated in MesenCult-XFR were also positive for CD141, rarely expressed £\-sma, and displayed multi-potency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of L-MSC established in MesenCult-XF„¥ medium. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker £GNp63, along with the corneal differentiation marker CK3/12. Our findings conclude that MesenCult-XFR is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells. Following on from the findings of the previous two parts, silk fibroin was tested as a novel dual-layer construct containing both an epithelium and underlying stroma for corneolimbal reconstruction. In this section, the growth and phenotype of HLE cells on non-porous versus porous fibroin membranes was compared. Furthermore, the growth of L-MSC in either serum-supplemented medium or the MesenCult-XFR culture system within fibroin fibrous mats was investigated. Lastly, the co-culture of HLE and L-MSC in serum-supplemented medium on and within fibroin dual-layer constructs was also examined. HLE on porous membranes displayed a flattened and squamous monolayer; in contrast, HLE on non-porous fibroin appeared cuboidal and stratified closer in appearance to a normal corneal epithelium. Both constructs maintained CK3/12 expression and distribution of £GNp63+ progenitor cells. Dual-layer fibroin scaffolds consisting of HLE cells and L-MSC maintained a similar phenotype as on the single layers alone. Overall, the present study proposed to create a three dimensional limbal tissue substitute of HLE cells and L-MSC together, ultimately for safe and beneficial transplantation back into the human eye. The results show that HLE and L-MSC can be cultivated separately and together whilst maintaining a clinically feasible phenotype containing a majority of progenitor cells. In addition, L-MSC were able to be cultivated routinely in the MesenCult-XF® culture system while maintaining a high purity for the MSC characteristic phenotype. However, as a serum-free culture medium was not found to sustain growth of both HLE and L-MSC, the combination scaffold was created in serum-supplemented medium, indicating that further refinement of this cultured limbal scaffold is required. This thesis has also demonstrated a potential novel marker for L-MSC, and has generated knowledge which may impact on the understanding of stromal-epithelial interactions. These results support the feasibility of a dual-layer tissue engineered corneolimbus constructed from silk fibroin, and warrant further studies into the potential benefits it offers to corneolimbal tissue regeneration. Further refinement of this technology should explore the potential benefits of using epithelial-stromal co-cultures with MesenCult-XF® derived L-MSC. Subsequent investigations into the effects of long-term culture on the phenotype and behaviour of the cells in the dual-layer scaffolds are also required. While this project demonstrated the feasibility in vitro for the production of a dual-layer tissue engineered corneolimbus, further studies are required to test the efficacy of the limbal scaffold in vivo. Future in vivo studies are essential to fully understand the integration and degradation of silk fibroin biomaterials in the cornea over time. Subsequent experiments should also investigate the use of both AM and silk fibroin with epithelial and stromal cell co-cultures in an animal model of LSCD. The outcomes of this project have provided a foundation for research into corneolimbal reconstruction using biomaterials and offer a stepping stone for future studies into corneolimbal tissue engineering.
Resumo:
There are an increasing number of compression systems available for treatment of venous leg ulcers and limited evidence on the relative effectiveness of these systems. The purpose of this study was to conduct a randomised controlled trial to compare the effectiveness of a 4-layer compression bandage system with Class 3 compression hosiery on healing and quality of life in patients with venous leg ulcers. Data were collected from 103 participants on demographics, health, ulcer status, treatments, pain, depression and quality of life for 24 weeks. After 24 weeks, 86% of the 4-layer bandage group and 77% of the hosiery group were healed (p=0.24). Median time to healing for the bandage group was 10 weeks, in comparison to 14 weeks for the hosiery group (p=0.018). Cox proportional hazards regression found participants in the 4-layer system were 2.1 times (95% CI 1.2–3.5) more likely to heal than those in hosiery, while longer ulcer duration, larger ulcer area and higher depression scores significantly delayed healing. No differences between groups were found in quality of life or pain measures. Findings indicate these systems were equally effective in healing patients by 24 weeks, however a 4-layer system may produce a more rapid response.
Resumo:
The study presents a multi-layer genetic algorithm (GA) approach using correlation-based methods to facilitate damage determination for through-truss bridge structures. To begin, the structure’s damage-suspicious elements are divided into several groups. In the first GA layer, the damage is initially optimised for all groups using correlation objective function. In the second layer, the groups are combined to larger groups and the optimisation starts over at the normalised point of the first layer result. Then the identification process repeats until reaching the final layer where one group includes all structural elements and only minor optimisations are required to fine tune the final result. Several damage scenarios on a complicated through-truss bridge example are nominated to address the proposed approach’s effectiveness. Structural modal strain energy has been employed as the variable vector in the correlation function for damage determination. Simulations and comparison with the traditional single-layer optimisation shows that the proposed approach is efficient and feasible for complicated truss bridge structures when the measurement noise is taken into account.
Resumo:
Aims: To investigate the relationship between retinal nerve fibre layer thickness and peripheral neuropathy in patients with Type 2 diabetes, particularly in those who are at higher risk of foot ulceration. Methods: Global and sectoral retinal nerve fibre layer thicknesses were measured at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). The level of neuropathy was assessed in 106 participants (82 with Type 2 diabetes and 24 healthy controls) using the 0–10 neuropathy disability score. Participants were stratified into four neuropathy groups: none (0–2), mild (3–5), moderate (6–8), and severe (9–10). A neuropathy disability score ≥ 6 was used to define those at higher risk of foot ulceration. Multivariable regression analysis was performed to assess the effect of neuropathy disability scores, age, disease duration and retinopathy on RNFL thickness. Results: Inferior (but not global or other sectoral) retinal nerve fibre layer thinning was associated with higher neuropathy disability scores (P = 0.03). The retinal nerve fibre layer was significantly thinner for the group with neuropathy disability scores ≥ 6 in the inferior quadrant (P < 0.005). Age, duration of disease and retinopathy levels did not significantly influence retinal nerve fibre layer thickness. Control participants did not show any significant differences in thickness measurements from the group with diabetes and no neuropathy (P > 0.24 for global and all sectors). Conclusions: Inferior quadrant retinal nerve fibre layer thinning is associated with peripheral neuropathy in patients with Type 2 diabetes, and is more pronounced in those at higher risk of foot ulceration.
Resumo:
Vehicular Ad-hoc Networks (VANET) have different characteristics compared to other mobile ad-hoc networks. The dynamic nature of the vehicles which act as routers and clients are connected with unreliable radio links and Routing becomes a complex problem. First we propose CO-GPSR (Cooperative GPSR), an extension of the traditional GPSR (Greedy Perimeter Stateless Routing) which uses relay nodes which exploit radio path diversity in a vehicular network to increase routing performance. Next we formulate a Multi-objective decision making problem to select optimum packet relaying nodes to increase the routing performance further. We use cross layer information for the optimization process. We evaluate the routing performance more comprehensively using realistic vehicular traces and a Nakagami fading propagation model optimized for highway scenarios in VANETs. Our results show that when Multi-objective decision making is used for cross layer optimization of routing a 70% performance increment can be obtained for low vehicle densities on average, which is a two fold increase compared to the single criteria maximization approach.
Resumo:
This paper reports outcomes of a pilot study to develop a conceptual framework to allow people to retrofit a building-layer to gain better control of their own built- environments. The study was initiated by the realisation that discussions surrounding the improvement of building performances tend to be about top-down technological solutions rather than to help and encourage bottom-up involvement of building-users. While users are the ultimate beneficiaries and their feedback is always appreciated, their direct involvements in managing buildings would often be regarded as obstruction or distraction. This is largely because casual interventions by uninformed building-users tend to disrupt the system. Some earlier researches showed however that direct and active participation of users could improve the building performance if appropriate training and/or systems were introduced. We also speculate this in long run would also make the built environment more sustainable. With this in mind, we looked for opportunities to retrofit our own office with an interactive layer to study how we could introduce ad-hoc systems for building-users. The aim of this paper is to describe our vision and initial attempts followed by discussion.
Resumo:
A synthesis is presented of the predictive capability of a family of near-wall wall-normal free Reynolds stress models (which are completely independent of wall topology, i.e., of the distance fromthe wall and the normal-to-thewall orientation) for oblique-shock-wave/turbulent-boundary-layer interactions. For the purpose of comparison, results are also presented using a standard low turbulence Reynolds number k–ε closure and a Reynolds stress model that uses geometric wall normals and wall distances. Studied shock-wave Mach numbers are in the range MSW = 2.85–2.9 and incoming boundary-layer-thickness Reynolds numbers are in the range Reδ0 = 1–2×106. Computations were carefully checked for grid convergence. Comparison with measurements shows satisfactory agreement, improving on results obtained using a k–ε model, and highlights the relative importance of redistribution and diffusion closures, indicating directions for future modeling work.
Resumo:
The influence of inflow turbulence on the results of Favre–Reynolds-averaged Navier–Stokes computations of supersonic oblique-shock-wave/turbulent-boundary-layer interactions (shock-wave Mach-number MSW ∼2.9), using seven-equation Reynolds-stress model turbulence closures, is studied. The generation of inflow conditions (and the initialization of the flowfield) for mean flow, Reynolds stresses, and turbulence length scale, based on semi-analytic grid-independent boundary-layer profiles, is described in detail. Particular emphasis is given to freestream turbulence intensity and length scale. The influence of external-flow turbulence intensity is studied in detail both for flat-plate boundary-layer flow and for a compression-ramp interaction with large separation. It is concluded that the Reynolds-stress model correctly reproduces the effects of external flow turbulence.