51 resultados para protein levels
Resumo:
Vascular endothelial growth factor (VEGF) promotes growth of blood or lymphatic vessels. The aim of the current study is to identify relationships between VEGF-A and VEGF-C, and their impact in angiogenesis and metastases in thyroid cancers. VEGF-A and VEGF-C mRNA and protein expression was investigated in 136 thyroid cancers (123 papillary thyroid carcinomas and 13 undifferentiated thyroid carcinomas) and 40 matched lymph node metastases with papillary thyroid carcinoma using reverse transcription polymerase chain reaction and immunohistochemistry. VEGF-A and VEGF-C mRNA expression was significantly different between conventional papillary thyroid carcinoma, follicular variant of papillary thyroid carcinoma, and undifferentiated thyroid carcinomas (P = 1 x 10(-6) and 1 x 10(-5), respectively). In undifferentiated carcinoma, VEGF-A and VEGF-C protein overexpression was noted in all cases. VEGF-A and VEGF-C mRNA overexpression was noted in 51% (n = 62) and 27% (n = 33) of the papillary thyroid carcinomas, whereas VEGF-A and VEGF-C protein overexpression was also identified in 70% (n = 86) and 62% (n = 76) of the carcinomas. VEGF-A mRNA was significantly higher in cancers with lymph node metastases compared with nonmetastatic cancers (P = .001), whereas most metastatic cancers underexpressed VEGF-C (P = .0002), with a similar trend for protein. The expression of VEGF-A and VEGF-C correlated with each other at both mRNA and protein levels (P = .00004 and .003, respectively). In summary, VEGF-A and -C expressions correlate with the pathological parameters and metastatic status of thyroid carcinomas. The significant correlations between the expressions of these genes add weight to hypotheses concerning VEGF-A and -C interaction in cancer progression.
Resumo:
This study investigated the clinicopathologic roles of mammalian target of rapamycin (mTOR) expression and its relationship to carcinogenesis and tumor progression in a colorectal adenoma-adenocarcinoma model. Two colon cancer cell lines with different pathologic stages (SW480 and SW48) and 1 normal colonic epithelial cell line (FHC) were used, in addition to 119 colorectal adenocarcinomas and 32 adenomas. mTOR expression profiles at messenger RNA (mRNA) and protein levels were investigated in the cells and tissues using real-time quantification polymerase chain reaction and immunohistochemistry. The findings were correlated with the clinicopathologic features of the tumors. The colon cell line from stage III cancer (SW48) showed higher expression of mTOR mRNA than that from stage II cancer (SW480). At the tissue level, mTOR showed higher mRNA and protein expression in colorectal carcinoma than in adenoma. The mRNA and protein expression was correlated with each other in approximately one-third of the carcinomas and adenomas. High levels of mTOR mRNA expression were noted more in carcinoma or adenoma arising from the distal portion of the large intestine (P = .025 and .019, respectively). Within the colorectal cancer population, a high level of expression of mTOR mRNA was related to the presence of lymph node metastases (P = .031), advanced pathologic stage (P = .05), and presence of persistent disease or tumor recurrence (P = .035). To conclude, the study has indicated that mTOR is likely to be involved in the development and progression of colorectal cancer and is linked to cancer initiation, invasiveness, and progression.
Resumo:
BACKGROUND INFORMATION: Evidence has shown that mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT) are linked to stem cell properties. We currently lack a model showing how the occurrence of MET and EMT in immortalised cells influences the maintenance of stem cell properties. Thus, we established a project aiming to investigate the roles of EMT and MET in the acquisition of stem cell properties in immortalised oral epithelial cells. RESULTS: In this study, a retroviral transfection vector (pLXSN-hTERT) was used to immortalise oral epithelial cells by insertion of the hTERT gene (hTERT(+)-oral mucosal epithelial cell line [OME]). The protein and RNA expression of EMT transcriptional factors (Snail, Slug and Twist), their downstream markers (E-cadherin and N-cadherin) and embryonic stem cell markers (OCT4, Nanog and Sox2) were studied by reverse transcription PCR and Western blots in these cells. Some EMT markers were detected at both mRNA and protein levels. Adipocytes and bone cells were noted in the multi-differentiation assay, showing that the immortal cells underwent EMT. The differentiation assay for hTERT(+)-OME cells revealed the recovery of epithelial phenotypes, implicating the presence of MET. The stem cell properties were confirmed by the detection of appropriate markers. Altered expression of alpha-tubulin and gamma-tubulin in both two-dimensional-cultured (without serum) and three-dimensional-cultured hTERT(+)-OME spheroids indicated the re-programming of cytoskeleton proteins which is attributed to MET processes in hTERT(+)-OME cells. CONCLUSIONS: EMT and MET are essential for hTERT-immortalised cells to maintain their epithelial stem cell properties.
Resumo:
Geminin was identified in Xenopus as a dual function protein involved in the regulation of DNA replication and neural differentiation. In Xenopus, Geminin acts to antagonize the Brahma (Brm) chromatin-remodeling protein, Brg1, during neural differentiation. Here, we investigate the interaction of Geminin with the Brm complex during Drosophila development. We demonstrate that Drosophila Geminin (Gem) interacts antagonistically with the Brm–BAP complex during wing development. Moreover, we show in vivo during wing development and biochemically that Brm acts to promote EGFR–Ras–MAPK signaling, as indicated by its effects on pERK levels, while Gem opposes this. Furthermore, gem and brm alleles modulate the wing phenotype of a Raf gain-of-function mutant and the eye phenotype of a EGFR gain-of-function mutant. Western analysis revealed that Gem over-expression in a background compromised for Brm function reduces Mek (MAPKK/Sor) protein levels, consistent with the decrease in ERK activation observed. Taken together, our results show that Gem and Brm act antagonistically to modulate the EGFR–Ras–MAPK signaling pathway, by affecting Mek levels during Drosophila development.
Resumo:
Chronic liver injury and inflammation lead to hepatic fibrosis, cirrhosis, and liver failure. Embryonic and mesenchymal stem cells have been shown to reduce experimental liver fibrosis but have potential limitations, including the formation of dysplastic precursors, tumors, and profibrogenic cells. Other stem-like cells may reduce hepatic inflammation and fibrosis without tumor and profibrogenic cell formation. To test this hypothesis we transplanted human amnion epithelial cells (hAEC), isolated from term delivered placenta, into immunocompetent C57/BL6 mice at week 2 of a 4-week regimen of carbon tetrachloride (CCl4) exposure to induce liver fibrosis. Two weeks following hAEC infusion, intact cells expressing the human-specific markers inner mitochondrial membrane protein and human leukocyte antigen-G were found in mouse liver without evidence of host rejection of the transplanted cells. Human albumin, known to be produced by hAEC, was detected in sera of hAEC-treated mice. Human DNA was detected in mouse liver and also spleen, lungs, and heart of some animals. Following hAEC transplantation, CCl4-treated animals showed decreased serum ALT levels and reduced hepatocyte apoptosis, compared to controls. hAEC-treated mouse liver had lower TNF-α and IL-6 protein levels and higher IL-10 compared to animals given CCl4 alone. Compared to CCl4 controls, hAEC-treated mice showed fewer activated collagen-producing hepatic stellate cells and less fibrosis area and collagen content. Reduced hepatic TGF-β levels in conjunction with a twofold increase in the active form of the collagen-degrading enzyme matrix metalloproteinase-2 in hAEC-treated mice compared to CCl4 controls may account for the reduction in fibrosis. hAEC transplantation into immunocompetent mice leads to cell engraftment, reduced hepatocyte apoptosis, and decreased hepatic inflammation and fibrosis.
Resumo:
The aim of this study was to evaluate the ex vivo oestrogen responsiveness of human proliferative phase endometrium using short-term explant cultures. The effects of oestrogen (17beta-E2) on proliferation and the expression of oestrogen-responsive genes known to be involved in regulating endometrial function were evaluated. Three distinct response patterns could be distinguished: (1) the menstrual (M) phase pattern (cycle days 2-5), which is characterised by a complete lack in the proliferative response to 17beta-E2, while an increased expression of AR (2.6-fold, P<0.01), PR (2.7-fold, P<0.01) and COX-2 (3.5-fold, P<0.01) at the mRNA level was observed and a similar upregulation was also found for AR, PR and COX-2 at the protein level; (2) the early proliferative (EP) phase pattern (cycle days 6-10) with 17beta-E2 enhanced proliferation in the stroma (1.7-fold, P<0.05), whereas the expression of AR, PR and COX-2 were not affected at the mRNA and protein levels and ER-a mRNA and protein levels were significantly reduced by 17beta-E2; (3) the late proliferative (LP) phase pattern (cycle days 11-14), which is characterised by a moderate stimulation of proliferation (1.4-fold, P<0.05) and PR mRNA expression (1.7-fold, P<0.01) by 17beta-E2. In conclusion, three distinct response patterns to 17beta-E2 could be identified with respect to proliferation and the expression of known oestrogen-responsive genes in human proliferative phase endometrium explant cultures.
Resumo:
BACKGROUND Estradiol (E-2) is an important promoter of the growth of both eutopic and ectopic endometrium. The findings with regard to the expression and activity of steroidogenic enzymes in endometrium of controls, in endometrium of endometriosis patients and in endometriotic lesions are not consistent. METHODS In this study, we have looked at the mRNA expression and protein levels of a range of steroidogenic enzymes [aromatase, 17 beta-hydroxysteroid dehydrogenases (17 beta-HSD) type 1, 2 and 4, estrogen sulfotransferase (EST) and steroid sulfatase (STS)l in eutopic and ectopic endometrium of patients (n = 14) with deep-infiltrative endometriosis as well as in disease-free endometrium (n = 48) using real-time PCR and immunocytochemistry. In addition, we evaluated their menstrual cycle-related expression patterns, and investigated their steroid responsiveness in explant cultures. RESULTS Aromatase and 17 beta-HSD type 1 mRNA levels were extremely low in normal human endometrium, while mRNAs for types 2 and 4 17 beta-HSD, EST and STS were readily detectable. Only 17 beta-HSD type 2 and EST genes showed sensitivity to progesterone in normal endometrium. Types 1 and 2 17 beta-HSD and STS protein was detected in normal endometrium using new polyclonal antibodies. CONCLUSIONS In endometriosis lesions, the balance is tilted in favor of enzymes producing E2. This is due to a suppression of types 2 and 4 17 beta-HSD, and an increased expression of aromatase and type 1 17 beta-HSD in ectopic endometrium.
Resumo:
BACKGROUND: The general concept that haemoglobin is only a carrier protein for oxygen and carbon dioxide is challenged since recent studies have shown haemoglobin expression in non-erythroid cells and the protection of haemoglobin against oxidative and nitrosative stress. Using microarrays, we previously showed expression of haemoglobins alpha, beta, delta and gamma and the haeme metabolizing enzyme, haeme oxygenase (HO)-1 in human endometrium. METHODS: Using real-time quantitative PCR, haemoglobin alpha, beta, delta and gamma, and HO-1 mRNA levels were assessed throughout the menstrual cycle (n = 30 women). Haemoglobin and HO-1 protein levels in the human endometrium were assessed with immunohistochemistry. For steroid responsiveness, menstrual and late proliferative-phase endometrial explants were cultured for 24 h in the presence of vehicle (0.1% ethanol), estradiol (17 beta-E-2, 1 nM), progestin (Org 2058, 1 nM) or 17 beta-E-2+Org 2058 (1 nM each). RESULTS: All haemoglobins and the HO-1 were expressed in normal human endometrium. Haemoglobin mRNA and protein expression did not vary significantly during the menstrual cycle. Explant culture with Org 2058 or 17 beta-E-2+Org 2058 increased haemoglobin gamma mRNA expression (P < 0.05). HO-1 mRNA levels, and not protein levels, were significantly higher during the menstrual (M)-phase of the cycle (P < 0.05), and were down-regulated by Org 2058 in M-phase explants and by 17 beta-E-2+Org 2058 in LP-phase explants, versus control (P < 0.05). CONCLUSIONS: The haemoglobin-HO-1 system may be required to ensure adequate regulation of the bioavailability of haeme, iron and oxygen in human endometrium.
Resumo:
Fear-related illnesses such as post-traumatic stress disorder (PTSD) impose a tremendous burden on individual quality of life, families, and the national economy. In the military population, 17-20% of services members returning from deployment are diagnosed with PTSD. While treatments have improved for PTSD and are helpful for some, many people continue to suffer despite therapy. The aim of this research is to examine fear memory behaviourally and at the cellular level in the amygdala by using a unique inter-cross strain of high and low fear phenotype mice. An extended outcross C57BL/6J x DBA/2J (F8) are selected for high or low Pavlovian fear memory to context and cue. On presentation of either the original learning context or the cue (tone) mice display high or low levels of freezing as a behavioural measure of fear. In order to identify key aspects of the cellular basis of this difference in fear memory behaviour we are making measurements of protein levels and neuron numbers of a known pathway involved in the consolidation of a long term fear memory (pMAPK). Ongoing studies aim to determine if high fear behaviour is associated with differential signalling in the lateral amygdala compared to low fear behaviour. Additionally, by blocking this pathway in the lateral amygdala (LA), we aim to reduce fear behaviour following Pavlovian fear conditioning. This research will help to unravel the cellular mechanisms underlying high fear behaviour and advance the field toward targeted treatment and improved outcomes, ultimately improving human quality of life.
Resumo:
Malaria is a global health problem; an effective vaccine is urgently needed. Due to the relative poverty and lack of infrastructure in malaria endemic areas, DNA-based vaccines that are stable at ambient temperatures and easy to formulate have great potential. While attention has been focused mainly on antigen selection, vector design and efficacy assessment, the development of a rapid and commercially viable process to manufacture DNA is generally overlooked. We report here a continuous purification technique employing an optimized stationary adsorbent to allow high-vaccine recovery, low-processing time, and, hence, high-productivity. A 40.0 mL monolithic stationary phase was synthesized and functionalized with amino groups from 2-Chloro-N,N- diethylethylamine hydrochloride for anion-exchange isolation of a plasmid DNA (pDNA) that encodes a malaria vaccine candidate, VR1020-PyMSP4/5. Physical characterization of the monolithic polymer showed a macroporous material with a modal pore diameter of 750 nm. The final vaccine product isolated after 3 min elution was homogeneous supercoiled plasmid with gDNA, RNA and protein levels in keeping with clinical regulatory standards. Toxicological studies of the pVR1020-PyMSP4/5 showed a minimum endotoxin level of 0.28 EU/m.g pDNA. This cost-effective technique is cGMP compatible and highly scalable for the production of DNA-based vaccines in commercial quantities, when such vaccines prove to be effective against malaria. © 2008 American Institute of Chemical Engineers.
Resumo:
Purpose Improved survival for men with prostate cancer has led to increased attention to factors influencing quality of life (QOL). As protein levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) have been reported to be associated with QOL in people with cancer, we sought to identify whether single-nucleotide polymorphisms (SNPs) of these genes were associated with QOL in men with prostate cancer. Methods Multiple linear regression of two data sets (including approximately 750 men newly diagnosed with prostate cancer and 550 men from the general population) was used to investigate SNPs of VEGF and IGF-1 (10 SNPs in total) for associations with QOL (measured by the SF-36v2 health survey). Results Men with prostate cancer who carried the minor ‘T’ allele for IGF-1 SNP rs35767 had higher mean Role-Physical scale scores (≥0.3 SD) compared to non-carriers (p < 0.05). While this association was not identified in men from the general population, one IGF-1 SNP rs7965399 was associated with higher mean Bodily Pain scale scores in men from the general population that was not found in men with prostate cancer. Men from the general population who carried the rare ‘C’ allele had higher mean Bodily Pain scale scores (≥0.3 SD) than non-carriers (p < 0.05). Conclusions Through identifying SNPs that are associated with QOL in men with prostate cancer and men from the general population, this study adds to the mapping of complex interrelationships that influence QOL and suggests a role for IGF-I in physical QOL outcomes. Future research may identify biomarkers associated with increased risk of poor QOL that could assist in the provision of pre-emptive support for those identified at risk.
Resumo:
Background There is increasing evidence supporting the concept of cancer stem cells (CSCs), which are responsible for the initiation, growth and metastasis of tumors. CSCs are thus considered the target for future cancer therapies. To achieve this goal, identifying potential therapeutic targets for CSCs is essential. Methods We used a natural product of vitamin E, gamma tocotrienol (gamma-T3), to treat mammospheres and spheres from colon and cervical cancers. Western blotting and real-time RT-PCR were employed to identify the gene and protein targets of gamma-T3 in mammospheres. Results We found that mammosphere growth was inhibited in a dose dependent manner, with total inhibition at high doses. Gamma-T3 also inhibited sphere growth in two other human epithelial cancers, colon and cervix. Our results suggested that both Src homology 2 domain-containing phosphatase 1 (SHP1) and 2 (SHP2) were affected by gamma-T3 which was accompanied by a decrease in K- and H-Ras gene expression and phosphorylated ERK protein levels in a dose dependent way. In contrast, expression of self-renewal genes TGF-beta and LIF, as well as ESR signal pathways were not affected by the treatment. These results suggest that gamma-T3 specifically targets SHP2 and the RAS/ERK signaling pathway. Conclusions SHP1 and SHP2 are potential therapeutic targets for breast CSCs and gamma-T3 is a promising natural drug for future breast cancer therapy.
Genome-wide linkage and association analyses implicate FASN in predisposition to Uterine Leiomyomata
Resumo:
Uterine leiomyomata (UL), the most prevalent pelvic tumors in women of reproductive age, pose a major public health problem given their high frequency, associated morbidities, and most common indication for hysterectomies. A genetic component to UL predisposition is supported by analyses of ethnic predisposition, twin studies, and familial aggregation. A genome-wide SNP linkage panel was genotyped and analyzed in 261 white UL-affected sister-pair families from the Finding Genes for Fibroids study. Two significant linkage regions were detected in 10p11 (LOD = 4.15) and 3p21 (LOD = 3.73), and five additional linkage regions were identified with LOD scores > 2.00 in 2q37, 5p13, 11p15, 12q14, and 17q25. Genome-wide association studies were performed in two independent cohorts of white women, and a meta-analysis was conducted. One SNP (rs4247357) was identified with a p value (p = 3.05 x 10(-8)) that reached genome-wide significance (odds ratio = 1.299). The candidate SNP is under a linkage peak and in a block of linkage disequilibrium in 17q25.3, which spans fatty acid synthase (FASN), coiled-coil-domain-containing 57 (CCDC57), and solute-carrier family 16, member 3 (SLC16A3). By tissue microarray immunohistochemistry, we found elevated (3-fold) FAS levels in UL-affected tissue compared to matched myometrial tissue. FAS transcripts and/or protein levels are upregulated in various neoplasms and implicated in tumor cell survival. FASN represents the initial UL risk allele identified in white women by a genome-wide, unbiased approach and opens a path to management and potential therapeutic intervention.
Resumo:
Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. © The Author 2014.
Resumo:
Extrapulmonary manifestations constitute 15 to 20% of tuberculosis cases, with lymph node tuberculosis (LNTB) as the most common form of infection. However, diagnosis and treatment advances are hindered by lack of understanding of LNTB biology. To identify host response, Mycobacterium tuberculosis infected lymph nodes from LNTB patients were studied by means of transcriptomics and quantitative proteomics analyses. The selected targets obtained by comparative analyses were validated by quantitative PCR and immunohistochemistry. This approach provided expression data for 8,728 transcripts and 102 proteins, differentially regulated in the infected human lymph node. Enhanced inflammation with upregulation of T-helper1-related genes, combined with marked dysregulation of matrix metalloproteinases, indicates tissue damage due to high immunoactivity at infected niche. This expression signature was accompanied by significant upregulation of an immunoregulatory gene, leukotriene A4 hydrolase, at both transcript and protein levels. Comparative transcriptional analyses revealed LNTB-specific perturbations. In contrast to pulmonary TB-associated increase in lipid metabolism, genes involved in fatty-acid metabolism were found to be downregulated in LNTB suggesting differential lipid metabolic signature. This study investigates the tissue molecular signature of LNTB patients for the first time and presents findings that indicate the possible mechanism of disease pathology through dysregulation of inflammatory and tissue-repair processes.