76 resultados para oncogene
Resumo:
Background Currently the best prognostic index for operable non-small cell lung cancer (NSCLC) is the TNM staging system. Molecular biology holds the promise of predicting outcome for the individual patient and identifying novel therapeutic targets. Angiogenesis, matrix metalloproteinases (MMP)-2 and -9, and the erb/HER type I tyrosine kinase receptors are all implicated in the pathogenesis of NSCLC. Methods A retrospective analysis of 167 patients with resected stage I-IIIa NSCLC and >60 days postoperative survival with a minimum follow up of 2 years was undertaken. Immunohistochemical analysis was performed on paraffin embedded sections for the microvessel marker CD34, MMP-2 and MMP-9, EGFR, and c-erbB-2 to evaluate the relationships between and impact on survival of these molecular markers. Results Tumour cell MMP-9 (HR 1.91 (1.23-2.97)), a high microvessel count (HR 1.97 (1.28-3.03)), and stage (stage II HR 1.44 (0.87-2.40), stage IIIa HR 2.21 (1.31-3.74)) were independent prognostic factors. Patients with a high microvessel count and tumour cell MMP-9 expression had a worse outcome than cases with only one (HR 1.68 (1.04-2.73)) or neither (HR 4.43 (2.29-8.57)) of these markers. EGFR expression correlated with tumour cell MMP-9 expression (p<0.001). Immunoreactivity for both of these factors within the same tumour was associated with a poor prognosis (HR 2.22 (1.45-3.41)). Conclusion Angiogenesis, EGFR, and MMP-9 expression provide prognostic information independent of TNM stage, allowing a more accurate outcome prediction for the individual patient. The development of novel anti-angiogenic agents, EGFR targeted therapies, and MMP inhibitors suggests that target specific adjuvant treatments may become a therapeutic option in patients with resected NSCLC.
Resumo:
HER2 is an erbB/HER type I tyrosine kinase receptor that is frequently over-expressed in malignant epithelial tumours. Herceptin, a humanised mouse monoclonal antibody to HER2, is proven therapeutically in the management of metastatic breast cancer, significantly prolonging survival when combined with cytotoxic chemotherapeutic agents. Immunohistochemical studies suggest that non-small-cell lung cancer (NSCLC) tumours may over-express HER2. Our aim was to evaluate HER2 gene amplification and semi-quantitative immuno-expression in NSCLC. A total of 344 NSCLC cases were immunostained for HER2 expression in 2 centres using the HercepTest. Fluorescence in situ hybridisation (FISH) analysis for HER2 gene amplification was performed on most positive cases and a subset of negative cases. Fifteen cases (4.3%) demonstrated 2+ or 3+ membranous HER2 immuno-expression. There was no correlation between immuno-expression and tumour histology or grade. Tumours from higher-stage disease were more often HercepTest-positive (p < 0.001). All 4 HercepTest 3 + cases demonstrated gene amplification. One of the 5 2+ cases tested for gene amplification showed areas of borderline amplification and areas of polyploidy. None of the 19 HercepTest-negative cases demonstrated gene amplification or polyploidy (p < 0.001). Gene amplification was demonstrated in all HercepTest 3+ scoring NSCLC cases. Unlike breast cancer, gene amplification and HER2 protein over-expression assessed by the HercepTest appeared to be uncommon in NSCLC. Herceptin may therefore target only a small proportion of NSCLC tumours and be of limited clinical value in this disease, particularly in the adjuvant setting. © 2001 Wiley-Liss, Inc.
Resumo:
Based on promising preclinical efficacy of bortezomib in mesothelioma, a single-arm phase II trial (Ireland Cooperative Oncology Research Group 05-10 study), with Simon's two-stage design, was undertaken to assess efficacy of bortezomib monotherapy in the first-line (poor performance status) and second-line settings. The Bcl-2 homology domain 3-only protein Noxa has been implicated as a key inducer of apoptosis by bortezomib. Thus, in a biomarker research substudy, we hypothesized that deficiency in Noxa expression might correlate with resistance. In the second-line setting, 23 patients were enrolled. Partial response was confirmed in one patient (4.8%) who received four cycles of bortezomib. One patient had stable disease; however, progression occurred in the majority of patients within the first two cycles. Median progression-free survival and overall survival were 2.1 and 5.8 months, respectively. In the first-line setting, ten patients were accrued, and there was no evidence of objective response. In the tumor analysis, expression of Noxa was seen in all biopsies. Bortezomib monotherapy exhibits insufficient activity to warrant further investigation in unselected patients with mesothelioma. © 2012 by the International Association for the Study of Lung.
Resumo:
Tumour angiogenesis has been recently recognised as one of the most important prognostic factors in lung cancer. Although a variety of angiogenic factors have been identified, the angiogenesis process remains poorly understood. Bcl-2, c-erbB-2 and p53 are well-known oncogenes involved in non- small-cell lung cancer pathogenesis. A direct correlation of thymidine phosphorylase (TP) and of vascular endothelial growth factor (VEGF) with intratumoural angiogenesis has been reported. In the present study we investigated the possible regulatory role if bcl-2, c-erB-2 proteins in angiogenesis and in VEGF and TP expression in non-small-cell lung cancer. Two hundred sixteen specimens from T1,2-NO, 1 staged patients treated with surgery alone were immunohistochemically examined. Bcl-2 and c-erbB-2 were significantly inversely related to each other (P = 0.04) and both were inversely associated with microvessel density (P < 0.02). High TP and VEGF reactivity was statistically related to loss of bcl-2 expression (P < 0.01). A significant co-expression of c-erbB-2 with TP was noted (P = 0.01). However, TP expression was related to high angiogenesis only in cases with absence of c-erB-2 expression (P < 0.0001). c-erbB-2 expression in poorly vascularised tumours was linked with poor outcome (P = 0.03). The present study provides strong evidence that the bcl-2 gene has a suppressive function over genes involved in both angiogenesis (VEGF and TP) and cell migration (c- erbB-2) in NSCLC. TP and c-erbB-2 proteins are significantly, and often simultaneously, expressed in bcl-2 negative cases. However, expression of the c-erbB-2 abolishes the TP-related angiogenic activity. Whether this is a result of a direct activity of the c-erbB-2 protein or a consequence of a c- erbB-2-related immune response remains to be further investigated.
Resumo:
It has been reported that genes regulating apoptosis may play a role in tumoral angiogenesis. This study examined the relationship between tumour vascularization, a measure of tumour angiogenesis, and bcl-2 and p53 expression in operable non-small-cell lung cancer (NSCLC). The relationship between bcl-2, p53 and tumour vascularization and epidermal-growth-factor- receptor(EGFR) and c-erbB-2 expression was also studied. Tissue sections from resected tumour specimens of 107 NSCLC patients were evaluated immunohistochemically for vascular grade and bcl-2, p53, EGFR and c-erbB-2 expression. bcl-2 expression was found in 20/107 (19%) cases and was associated with squamous-cell histology (p = 0.03). A strong inverse relationship was found between bcl-2 expression and vascular grade (p = 0.005). All c-erbB-2-positive cases were negative for bcl-2 expression (p = 0.01). Overall no association was found between c-erbB-2 expression and vascular grade. However, in bcl-2-negative cases positive c-erbB-2 expression correlated with low angiogenesis (p = 0.05). No relationship was found between p53 and EGFR expression and bcl-2, c-erbB-2 or vascular grade. The improved prognosis reported in bcl-2-positive NSCLC may be related to low tumour vascularization. The results suggest that the anti-apoptotic gene bcl- 2 plays a role in regulating tumour angiogenesis. Since normal lung epithelium expresses bcl-2, a sequence of tumour progression involving loss of bcl-2, then activation of c-erbB-2 or increase in tumour vascularization is proposed.
Resumo:
Purpose: To investigate the expression pattern of hypoxia-induced proteins identified as being involved in malignant progression of head-and-neck squamous cell carcinoma (HNSCC) and to determine their relationship to tumor pO 2 and prognosis. Methods and Materials: We performed immunohistochemical staining of hypoxia-induced proteins (carbonic anhydrase IX [CA IX], BNIP3L, connective tissue growth factor, osteopontin, ephrin A1, hypoxia inducible gene-2, dihydrofolate reductase, galectin-1, IκB kinase β, and lysyl oxidase) on tumor tissue arrays of 101 HNSCC patients with pretreatment pO 2 measurements. Analysis of variance and Fisher's exact tests were used to evaluate the relationship between marker expression, tumor pO 2, and CA IX staining. Cox proportional hazard model and log-rank tests were used to determine the relationship between markers and prognosis. Results: Osteopontin expression correlated with tumor pO 2 (Eppendorf measurements) (p = 0.04). However, there was a strong correlation between lysyl oxidase, ephrin A1, and galectin-1 and CA IX staining. These markers also predicted for cancer-specific survival and overall survival on univariate analysis. A hypoxia score of 0-5 was assigned to each patient, on the basis of the presence of strong staining for these markers, whereby a higher score signifies increased marker expression. On multivariate analysis, increasing hypoxia score was an independent prognostic factor for cancer-specific survival (p = 0.015) and was borderline significant for overall survival (p = 0.057) when adjusted for other independent predictors of outcomes (hemoglobin and age). Conclusions: We identified a panel of hypoxia-related tissue markers that correlates with treatment outcomes in HNSCC. Validation of these markers will be needed to determine their utility in identifying patients for hypoxia-targeted therapy. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Background: Findings from the phase 3 FLEX study showed that the addition of cetuximab to cisplatin and vinorelbine significantly improved overall survival, compared with cisplatin and vinorelbine alone, in the first-line treatment of EGFR-expressing, advanced non-small-cell lung cancer (NSCLC). We investigated whether candidate biomarkers were predictive for the efficacy of chemotherapy plus cetuximab in this setting. Methods: Genomic DNA extracted from formalin-fixed paraffin-embedded (FFPE) tumour tissue of patients enrolled in the FLEX study was screened for KRAS codon 12 and 13 and EGFR kinase domain mutations with PCR-based assays. In FFPE tissue sections, EGFR copy number was assessed by dual-colour fluorescence in-situ hybridisation and PTEN expression by immunohistochemistry. Treatment outcome was investigated according to biomarker status in all available samples from patients in the intention-to-treat population. The primary endpoint in the FLEX study was overall survival. The FLEX study, which is ongoing but not recruiting participants, is registered with ClinicalTrials.gov, number NCT00148798. Findings: KRAS mutations were detected in 75 of 395 (19%) tumours and activating EGFR mutations in 64 of 436 (15%). EGFR copy number was scored as increased in 102 of 279 (37%) tumours and PTEN expression as negative in 107 of 303 (35%). Comparisons of treatment outcome between the two groups (chemotherapy plus cetuximab vs chemotherapy alone) according to biomarker status provided no indication that these biomarkers were of predictive value. Activating EGFR mutations were identified as indicators of good prognosis, with patients in both treatment groups whose tumours carried such mutations having improved survival compared with those whose tumours did not (chemotherapy plus cetuximab: median 17·5 months [95% CI 11·7-23·4] vs 8·5 months [7·1-10·8], hazard ratio [HR] 0·52 [0·32-0·84], p=0·0063; chemotherapy alone: 23·8 months [15·2-not reached] vs 10·0 months [8·7-11·0], HR 0·35 [0·21-0·59], p<0·0001). Expression of PTEN seemed to be a potential indicator of good prognosis, with patients whose tumours expressed PTEN having improved survival compared with those whose tumours did not, although this finding was not significant (chemotherapy plus cetuximab: median 11·4 months [8·6-13·6] vs 6·8 months [5·9-12·7], HR 0·80 [0·55-1·16], p=0·24; chemotherapy alone: 11·0 months [9·2-12·6] vs 9·3 months [7·6-11·9], HR 0·77 [0·54-1·10], p=0·16). Interpretation: The efficacy of chemotherapy plus cetuximab in the first-line treatment of advanced NSCLC seems to be independent of each of the biomarkers assessed. Funding: Merck KGaA. © 2011 Elsevier Ltd.
Resumo:
Nonsmall cell lung cancer samples from the European Early Lung Cancer biobank were analysed to assess the prognostic significance of mutations in the TP53, KRAS and EGFR genes. The series included 11 never-smokers, 86 former smokers, 152 current smokers and one patient without informed smoking status. There were 110 squamous cell carcinomas (SCCs), 133 adenocarcinomas (ADCs) and seven large cell carcinomas or mixed histologies. Expression of p53 was analysed by immunohistochemistry. DNA was extracted from frozen tumour tissues. TP53 mutations were detected in 48.8% of cases and were more frequent among SCCs than ADCs (p<0.0001). TP53 mutation status was not associated with prognosis. G to T transversions, known to be associated with smoking, were marginally more common among patients who developed a second primary lung cancer or recurrence/metastasis (progressive disease). EGFR mutations were almost exclusively found in never-smoking females (p=0.0067). KRAS mutations were detected in 18.5% of cases, mainly ADC (p<0.0001), and showed a tendency toward association with progressive disease status. These results suggest that mutations are good markers of different aetiologies and histopathological forms of lung cancers but have little prognostic value, with the exception of KRAS mutation, which may have a prognostic value in ADC. Copyright©ERS 2012.
Resumo:
Akt, a Serine/Threonine protein kinase, mediates growth factor-associated cell survival. Constitutive activation of Akt (phosphorylated Akt, P-Akt) has been observed in several human cancers, including lung cancer and may be associated with poor prognosis and chemotherapy and radiotherapy resistance. The clinical relevance of P-Akt in non-small cell lung cancer (NSCLC) is not well described. In the present study, we examined 82 surgically resected snap-frozen and paraffin-embedded stage I to IIIA NSCLC samples for P-Akt and Akt by Western blotting and for P-Akt by immunohistochemistry. P-Akt protein levels above the median, measured using reproducible semiquantitative band densitometry, correlated with a favorable outcome (P = 0.007). Multivariate analysis identified P-Akt as a significant independent favorable prognostic factor (P = 0.004). Although associated with a favorable prognosis, high P-Akt levels correlated with high tumor grade (P = 0.02). Adenocarcinomas were associated with low P-Akt levels (P = 0.039). Akt was not associated with either outcome or clinicopathologic variables. Cytoplasmic (CP-Akt) and nuclear (NP-Akt) P-Akt tumor cell staining was detected in 96% and 42% of cases, respectively. Both CP-Akt and NP-Akt correlated with well-differentiated tumors (P = 0.008 and 0.017, respectively). NP-Akt also correlated with nodal metastases (P = 0.022) and squamous histology (P = 0.037). These results suggest P-Akt expression is a favorable prognostic factor in NSCLC. Immunolocalization of P-Akt, however, may be relevant as NP-Akt was associated with nodal metastases, a known poor prognostic feature in this disease. P-Akt may be a potential novel therapeutic target for the management of NSCLC. © 2005 American Association for Cancer Research.
Resumo:
Purpose Cancer cells have been shown to be more susceptible to Ran knockdown than normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK [mitogen-activated protein/extracellular signal-regulated kinase (ERK; MEK)] and phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry [propidium iodide (PI) and Annexin V staining] and MTT assay in cancer cells grown under different conditions after knockdown of Ran. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. K-Ras-mutated, c-Met-amplified, and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of K-Ras or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. ©2011 AACR.
Resumo:
Background Ras-related nuclear protein (Ran) is required for cancer cell survival in vitro and human cancer progression, but the molecular mechanisms are largely unknown. Methods We investigated the effect of the v-myc myelocytomatosis viral oncogene homolog (Myc) on Ran expression by Western blot, chromatin immunoprecipitation, and luciferase reporter assays and the effects of Myc and Ran expression in cancer cells by soft-agar, cell adhesion, and invasion assays. The correlation between Myc and Ran and the association with patient survival were investigated in 14 independent patient cohorts (n = 2430) and analyzed with Spearman's rank correlation and Kaplan-Meier plots coupled with Wilcoxon-Gehan tests, respectively. All statistical tests were two-sided. Results Myc binds to the upstream sequence of Ran and transactivates Ran promoter activity. Overexpression of Myc upregulates Ran expression, whereas knockdown of Myc downregulates Ran expression. Myc or Ran overexpression in breast cancer cells is associated with cancer progression and metastasis. Knockdown of Ran reverses the effect induced by Myc overexpression in breast cancer cells. In clinical data, a positive association between Myc and Ran expression was revealed in 288 breast cancer and 102 lung cancer specimens. Moreover, Ran expression levels differentiate better or poorer survival in Myc overexpressing breast (χ2 = 24.1; relative risk [RR] = 9.1, 95% confidence interval [CI] = 3.3 to 24.7, P <. 001) and lung (χ2 = 6.04; RR = 2.8, 95% CI = 1.2 to 6.3; P =. 01) cancer cohorts. Conclusions Our results suggest that Ran is required for and is a potential therapeutic target of Myc-driven cancer progression in both breast and lung cancers. © 2013 The Author.
Resumo:
The 'human topoisomerase I (htopoI) damage response' was reported to be triggered by various kinds of DNA lesions. Also, a high and persistent level of htopoI cleavage complexes correlated with apoptosis. In the present study, we demonstrate that DNA damage-independent induction of cell death using colcemid and tumor necrosis factor is also accompanied by a strong htopoI response that correlates with the onset of apoptotic hallmarks. Consequently, these results suggest that htopoI cleavage complex formation may be caused by signaling pathways independent of the kind of cellular stress. Thus, protein interactions or signaling cascades induced by DNA damage or cellular stress might lead to the formation of stabilized cleavage complexes rather than the DNA lesion itself. Finally, we show that p53 not only plays a key role in the regulation of the htopoI response to UV-C irradiation but also to treatment with colcemid.
Resumo:
BACKGROUND: The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X(L), pro-apoptotic Bax and Bad). METHODS: Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (Western immunoblots, densitometry, immunoelectron microscopy). RESULTS: Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X(L) and Bax, but not Bcl-2 or Bad, was identified in control distal cells. Bcl-X(L) and Bax had nonsignificant increases (P> 0.05) in these cells. Bcl-2, Bax, and Bcl-X(L), but not Bad, were endogenously expressed in control proximal cells. Bcl-X(L) was significantly decreased in treated proximal cultures (P < 0.05), with Bax and Bcl-2 having nonsignificant increases (P> 0.05). Immunoelectron microscopy localization indicated that control and treated but surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X(L) from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-X(L) expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. CONCLUSION: The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X(L) in proximal cells, as well as translocation of Bcl-X(L) protein to mitochondria within the surviving distal cells.
Resumo:
Bcl-x(l) and Bax play important roles in the regulation of apoptosis. This study investigated the involvement of the mitochondrial death pathway and the role of Bcl-x(l) and Bax in the escape from apoptosis after prolonged serum deprivation in Madin-Darby canine kidney (MDCK) cells. Low level apoptosis and basal activity of the mitochondrial death pathway were detectable in normal cell growth. In serum deprivation, mitosis was partially suppressed, and the mitochondrial activity was stimulated. The level of apoptosis continuously rose over 48 h. This rise was concomitant with the increasing presence of cytochrome c in cytosol. However, both apoptosis and cytosolic cytochrome c fell dramatically at 72 h. Elevation of whole cell Bcl-x(l) and redistribution of Bcl-x(l) protein from cytosol to the membrane at 48 h and 72 h was observed. Redistribution of Bax protein from the membrane to cytosol occurred at 24 h, and remained steady to 72 h. Bax/Bcl-x(l) coimmunoprecipitation by anti-Bax antibody showed reduced Bax/Bcl-x(l) interaction at the membrane at 72 h, but not at 24 or 48 h. These results suggest that apoptosis upon serum withdrawal results from the leakage of cytochrome c to cytosol. Amelioration of the leakage of cytochrome c and apoptosis requires not only the increase of Bcl-x(l)/Bax ratio, but also the release of Bcl-x(l) from Bax at the membrane.
Resumo:
Integrin-linked kinase (ILK) and p38MAPK are protein kinases that transduce extracellular signals regulating cell migration and actin cytoskeletal organization. ILK-dependent regulation of p38MAPK is critical for mammalian kidney development and in smooth muscle cell migration, however, specific p38 isoforms has not been previously examined in ILK-regulated responses. Signaling by ILK and p38MAPK is often dysregulated in bladder cancer, and here we report a strong positive correlation between protein levels of ILK and p38β, which is the predominant isoform found in bladder cancer cells, as well as in patient-matched normal bladder and tumor samples. Knockdown by RNA interference of either p38β or ILK disrupts serum-induced, Rac1-dependent migration and actin cytoskeletal organization in bladder cancer cells. Surprisingly, ILK knockdown causes the selective reduction in p38β cellular protein level, without inhibiting p38β messenger RNA (mRNA) expression. The loss of p38β protein in ILK-depleted cells is partially rescued by the 26S proteasomal inhibitor MG132. Using co-precipitation and bimolecular fluorescent complementation assays, we find that ILK selectively forms cytoplasmic complexes with p38β. In situ proximity ligation assays further demonstrate that serum-stimulated assembly of endogenous ILK–p38β complexes is sensitive to QLT-0267, a small molecule ILK kinase inhibitor. Finally, inhibition of ILK reduces the amplitude and period of serum-induced activation of heat shock protein 27 (Hsp27), a target of p38β implicated in actin cytoskeletal reorganization. Our work identifies Hsp27 as a novel target of ILK–p38β signaling complexes, playing a key role in bladder cancer cell migration.