91 resultados para nonparametric maximum likelihood estimator (NPMLE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crash prediction models are used for a variety of purposes including forecasting the expected future performance of various transportation system segments with similar traits. The influence of intersection features on safety have been examined extensively because intersections experience a relatively large proportion of motor vehicle conflicts and crashes compared to other segments in the transportation system. The effects of left-turn lanes at intersections in particular have seen mixed results in the literature. Some researchers have found that left-turn lanes are beneficial to safety while others have reported detrimental effects on safety. This inconsistency is not surprising given that the installation of left-turn lanes is often endogenous, that is, influenced by crash counts and/or traffic volumes. Endogeneity creates problems in econometric and statistical models and is likely to account for the inconsistencies reported in the literature. This paper reports on a limited-information maximum likelihood (LIML) estimation approach to compensate for endogeneity between left-turn lane presence and angle crashes. The effects of endogeneity are mitigated using the approach, revealing the unbiased effect of left-turn lanes on crash frequency for a dataset of Georgia intersections. The research shows that without accounting for endogeneity, left-turn lanes ‘appear’ to contribute to crashes; however, when endogeneity is accounted for in the model, left-turn lanes reduce angle crash frequencies as expected by engineering judgment. Other endogenous variables may lurk in crash models as well, suggesting that the method may be used to correct simultaneity problems with other variables and in other transportation modeling contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A good object representation or object descriptor is one of the key issues in object based image analysis. To effectively fuse color and texture as a unified descriptor at object level, this paper presents a novel method for feature fusion. Color histogram and the uniform local binary patterns are extracted from arbitrary-shaped image-objects, and kernel principal component analysis (kernel PCA) is employed to find nonlinear relationships of the extracted color and texture features. The maximum likelihood approach is used to estimate the intrinsic dimensionality, which is then used as a criterion for automatic selection of optimal feature set from the fused feature. The proposed method is evaluated using SVM as the benchmark classifier and is applied to object-based vegetation species classification using high spatial resolution aerial imagery. Experimental results demonstrate that great improvement can be achieved by using proposed feature fusion method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional searching method for model-order selection in linear regression is a nested full-parameters-set searching procedure over the desired orders, which we call full-model order selection. On the other hand, a method for model-selection searches for the best sub-model within each order. In this paper, we propose using the model-selection searching method for model-order selection, which we call partial-model order selection. We show by simulations that the proposed searching method gives better accuracies than the traditional one, especially for low signal-to-noise ratios over a wide range of model-order selection criteria (both information theoretic based and bootstrap-based). Also, we show that for some models the performance of the bootstrap-based criterion improves significantly by using the proposed partial-model selection searching method. Index Terms— Model order estimation, model selection, information theoretic criteria, bootstrap 1. INTRODUCTION Several model-order selection criteria can be applied to find the optimal order. Some of the more commonly used information theoretic-based procedures include Akaike’s information criterion (AIC) [1], corrected Akaike (AICc) [2], minimum description length (MDL) [3], normalized maximum likelihood (NML) [4], Hannan-Quinn criterion (HQC) [5], conditional model-order estimation (CME) [6], and the efficient detection criterion (EDC) [7]. From a practical point of view, it is difficult to decide which model order selection criterion to use. Many of them perform reasonably well when the signal-to-noise ratio (SNR) is high. The discrepancies in their performance, however, become more evident when the SNR is low. In those situations, the performance of the given technique is not only determined by the model structure (say a polynomial trend versus a Fourier series) but, more importantly, by the relative values of the parameters within the model. This makes the comparison between the model-order selection algorithms difficult as within the same model with a given order one could find an example for which one of the methods performs favourably well or fails [6, 8]. Our aim is to improve the performance of the model order selection criteria in cases where the SNR is low by considering a model-selection searching procedure that takes into account not only the full-model order search but also a partial model order search within the given model order. Understandably, the improvement in the performance of the model order estimation is at the expense of additional computational complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA of three biological variants, G1, Ic and G2, which originated from the same greenhouse isolate of rice tungro bacilliform virus (RTBV) at the International Rice Research Institute (IRRI), was cloned and sequenced. Comparison of the sequences revealed small differences in genome sizes. The variants were between 95 and 99% identical at the nucleotide and amino acid levels. Alignment of the three genome sequences with those of three published RTBV sequences (Phi-1, Phi-2 and Phi-3) revealed numerous nucleotide substitutions and some insertions and deletions. The published RTBV sequences originated from the same greenhouse isolate at IRRI 20, 11 and 9 years ago. All open reading frames (ORFs) and known functional domains were conserved across the six variants. The cysteine-rich region of ORF3 showed the greatest variation. When the six DNA sequences from IRRI were compared with that of an isolate from Malaysia (Serdang), similar changes were observed in the cysteine-rich region in addition to other nucleotide substitutions and deletions across the genome. The aligned nucleotide sequences of the IRRI variants and Serdang were used to analyse phylogenetic relationships by the bootstrapped parsimony, distance and maximum-likelihood methods. The isolates clustered in three groups: Serdang alone; Ic and G1; and Phi-1, Phi-2, Phi-3 and G2. The distribution of phylogenetically informative residues in the IRRI sequences shared with the Serdang sequence and the differing tree topologies for segments of the genome suggested that recombination, as well as substitutions and insertions or deletions, has played a role in the evolution of RTBV variants. The significance and implications of these evolutionary forces are discussed in comparison with badnaviruses and caulimoviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maximum-likelihood estimates of the parameters of stochastic differential equations are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed-form expression for the transitional probability density function of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This article provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox–Ingersoll–Ross and Ornstein–Uhlenbeck equations respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the statistical analyses used to derive bridge live loads models for Hong Kong from a 10-year weigh-in-motion (WIM) data. The statistical concepts required and the terminologies adopted in the development of bridge live load models are introduced. This paper includes studies for representative vehicles from the large amount of WIM data in Hong Kong. Different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc are first analyzed by various stochastic processes in order to obtain the mathematical distributions of these parameters. As a prerequisite to determine accurate bridge design loadings in Hong Kong, this study not only takes advantages of code formulation methods used internationally but also presents a new method for modelling collected WIM data using a statistical approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smut fungi are important pathogens of grasses, including the cultivated crops maize, sorghum and sugarcane. Typically, smut fungi infect the inflorescence of their host plants. Three genera of smut fungi (Ustilago, Sporisorium and Macalpinomyces) form a complex with overlapping morphological characters, making species placement problematic. For example, the newly described Macalpinomyces mackinlayi possesses a combination of morphological characters such that it cannot be unambiguously accommodated in any of the three genera. Previous attempts to define Ustilago, Sporisorium and Macalpinomyces using morphology and molecular phylogenetics have highlighted the polyphyletic nature of the genera, but have failed to produce a satisfactory taxonomic resolution. A detailed systematic study of 137 smut species in the Ustilago-Sporisorium- Macalpinomyces complex was completed in the current work. Morphological and DNA sequence data from five loci were assessed with maximum likelihood and Bayesian inference to reconstruct a phylogeny of the complex. The phylogenetic hypotheses generated were used to identify morphological synapomorphies, some of which had previously been dismissed as a useful way to delimit the complex. These synapomorphic characters are the basis for a revised taxonomic classification of the Ustilago-Sporisorium-Macalpinomyces complex, which takes into account their morphological diversity and coevolution with their grass hosts. The new classification is based on a redescription of the type genus Sporisorium, and the establishment of four genera, described from newly recognised monophyletic groups, to accommodate species expelled from Sporisorium. Over 150 taxonomic combinations have been proposed as an outcome of this investigation, which makes a rigorous and objective contribution to the fungal systematics of these important plant pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach to building an observation likelihood function from a set of sparse, noisy training observations taken from known locations by a sensor with no obvious geometric model. The basic approach is to fit an interpolant to the training data, representing the expected observation, and to assume additive sensor noise. This paper takes a Bayesian view of the problem, maintaining a posterior over interpolants rather than simply the maximum-likelihood interpolant, giving a measure of uncertainty in the map at any point. This is done using a Gaussian process framework. To validate the approach experimentally, a model of an environment is built using observations from an omni-directional camera. After a model has been built from the training data, a particle filter is used to localise while traversing this environment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequence data often have competing signals that are detected by network programs or Lento plots. Such data can be formed by generating sequences on more than one tree, and combining the results, a mixture model. We report that with such mixture models, the estimates of edge (branch) lengths from maximum likelihood (ML) methods that assume a single tree are biased. Based on the observed number of competing signals in real data, such a bias of ML is expected to occur frequently. Because network methods can recover competing signals more accurately, there is a need for ML methods allowing a network. A fundamental problem is that mixture models can have more parameters than can be recovered from the data, so that some mixtures are not, in principle, identifiable. We recommend that network programs be incorporated into best practice analysis, along with ML and Bayesian trees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite recent methodological advances in inferring the time-scale of biological evolution from molecular data, the fundamental question of whether our substitution models are sufficiently well specified to accurately estimate branch-lengths has received little attention. I examine this implicit assumption of all molecular dating methods, on a vertebrate mitochondrial protein-coding dataset. Comparison with analyses in which the data are RY-coded (AG → R; CT → Y) suggests that even rates-across-sites maximum likelihood greatly under-compensates for multiple substitutions among the standard (ACGT) NT-coded data, which has been subject to greater phylogenetic signal erosion. Accordingly, the fossil record indicates that branch-lengths inferred from the NT-coded data translate into divergence time overestimates when calibrated from deeper in the tree. Intriguingly, RY-coding led to the opposite result. The underlying NT and RY substitution model misspecifications likely relate respectively to “hidden” rate heterogeneity and changes in substitution processes across the tree, for which I provide simulated examples. Given the magnitude of the inferred molecular dating errors, branch-length estimation biases may partly explain current conflicts with some palaeontological dating estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Butterfly long-wavelength (L) photopigments are interesting for comparative studies of adaptive evolution because of the tremendous phenotypic variation that exists in their wavelength of peak absorbance (lambda(max) value). Here we present a comprehensive survey of L photopigment variation by measuring lambda(max) in 12 nymphalid and 1 riodinid species using epi-microspectrophotometry. Together with previous data, we find that L photopigment lambda(max) varies from 510-565 nm in 22 nymphalids, with an even broader 505- to 600-nm range in riodinids. We then surveyed the L opsin genes for which lambda(max) values are available as well as from related taxa and found 2 instances of L opsin gene duplication within nymphalids, in Hermeuptychia hermes and Amathusia phidippus, and 1 instance within riodinids, in the metalmark butterfly Apodemia mormo. Using maximum parsimony and maximum likelihood ancestral state reconstructions to map the evolution of spectral shifts within the L photopigments of nymphalids, we estimate the ancestral pigment had a lambda(max) = 540 nm +/- 10 nm standard error and that blueshifts in wavelength have occurred at least 4 times within the family. We used ancestral state reconstructions to investigate the importance of several amino acid substitutions (Ile17Met, Ala64Ser, Asn70Ser, and Ser137Ala) previously shown to have evolved under positive selection that are correlated with blue spectral shifts. These reconstructions suggest that the Ala64Ser substitution has indeed occurred along the newly identified blueshifted L photopigment lineages. Substitutions at the other 3 sites may also be involved in the functional diversification of L photopigments. Our data strongly suggest that there are limits to the evolution of L photopigment spectral shifts among species with only one L opsin gene and that opsin gene duplication broadens the potential range of lambda(max) values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Butterflies and primates are interesting for comparative color vision studies, because both have evolved middle- (M) and long-wavelength- (L) sensitive photopigments with overlapping absorbance spectrum maxima (lambda(max) values). Although positive selection is important for the maintenance of spectral variation within the primate pigments, it remains an open question whether it contributes similarly to the diversification of butterfly pigments. To examine this issue, we performed epimicrospectrophotometry on the eyes of five Limenitis butterfly species and found a 31-nm range of variation in the lambda(max) values of the L-sensitive photopigments (514-545 nm). We cloned partial Limenitis L opsin gene sequences and found a significant excess of replacement substitutions relative to polymorphisms among species. Mapping of these L photopigment lambda(max) values onto a phylogeny revealed two instances within Lepidoptera of convergently evolved L photopigment lineages whose lambda(max) values were blue-shifted. A codon-based maximum-likelihood analysis indicated that, associated with the two blue spectral shifts, four amino acid sites (Ile17Met, Ala64Ser, Asn70Ser, and Ser137Ala) have evolved substitutions in parallel and exhibit significant d(N)/d(S) >1. Homology modeling of the full-length Limenitis arthemis astyanax L opsin placed all four substitutions within the chromophore-binding pocket. Strikingly, the Ser137Ala substitution is in the same position as a site that in primates is responsible for a 5- to 7-nm blue spectral shift. Our data show that some of the same amino acid sites are under positive selection in the photopigments of both butterflies and primates, spanning an evolutionary distance >500 million years.