96 resultados para myelin basic protein, translational control, multiple sclerosis, microRNA, glia cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary genetic risk factor in multiple sclerosis (MS) is the HLA-DRB1*1501 allele; however, much of the remaining genetic contribution to MS has yet to be elucidated. Several lines of evidence support a role for neuroendocrine system involvement in autoimmunity which may, in part, be genetically determined. Here, we comprehensively investigated variation within eight candidate hypothalamic-pituitary-adrenal (HPA) axis genes and susceptibility to MS. A total of 326 SNPs were investigated in a discovery dataset of 1343 MS cases and 1379 healthy controls of European ancestry using a multi-analytical strategy. Random Forests, a supervised machine-learning algorithm, identified eight intronic SNPs within the corticotrophin-releasing hormone receptor 1 or CRHR1 locus on 17q21.31 as important predictors of MS. On the basis of univariate analyses, six CRHR1 variants were associated with decreased risk for disease following a conservative correction for multiple tests. Independent replication was observed for CRHR1 in a large meta-analysis comprising 2624 MS cases and 7220 healthy controls of European ancestry. Results from a combined meta-analysis of all 3967 MS cases and 8599 controls provide strong evidence for the involvement of CRHR1 in MS. The strongest association was observed for rs242936 (OR = 0.82, 95% CI = 0.74-0.90, P = 9.7 × 10-5). Replicated CRHR1 variants appear to exist on a single associated haplotype. Further investigation of mechanisms involved in HPA axis regulation and response to stress in MS pathogenesis is warranted. © The Author 2010. Published by Oxford University Press. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10−11, OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Genetic susceptibility to multiple sclerosis (MS) has been recognised for many years. Considerable data exist from the northern hemisphere regarding the familial recurrence risks for MS, but there are few data for the southern hemisphere and regions at lower latitude such as Australia. To investigate the interaction between environmental and genetic causative factors in MS, the authors undertook a familial recurrence risk study in three latitudinally distinct regions of Australia. METHODS: Immediate and extended family pedigrees have been collected for three cohorts of people with MS in Queensland, Victoria and Tasmania spanning 15° of latitude. Age of onset data from Queensland were utilised to estimate age-adjusted recurrence rates. RESULTS: Recurrence risks in Australia were significantly lower than in studies from northern hemisphere populations. The age-adjusted risk for siblings across Australia was 2.13% compared with 3.5% for the northern hemisphere. A similar pattern was seen for other relatives. The risks to relatives were proportional to the population risks for each site, and hence the sibling recurrence-risk ratio (λ(s)) was similar across all sites. DISCUSSION: The familial recurrence risk of MS in Australia is lower than in previously reported studies. This is directly related to the lower population prevalence of MS. The overall genetic susceptibility in Australia as measured by the λ(s) is similar to the northern hemisphere, suggesting that the difference in population risk is explained largely by environmental factors rather than by genetic admixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To perform a 1-stage meta-analysis of genome-wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and to explore functional consequences of new susceptibility loci. Methods: We synthesized 7 MS GWAS. Each data set was imputed using HapMap phase II, and a per single nucleotide polymorphism (SNP) meta-analysis was performed across the 7 data sets. We explored RNA expression data using a quantitative trait analysis in peripheral blood mononuclear cells (PBMCs) of 228 subjects with demyelinating disease. Results: We meta-analyzed 2,529,394 unique SNPs in 5,545 cases and 12,153 controls. We identified 3 novel susceptibility alleles: rs170934T at 3p24.1 (odds ratio [OR], 1.17; p ¼ 1.6 � 10�8) near EOMES, rs2150702G in the second intron of MLANA on chromosome 9p24.1 (OR, 1.16; p ¼ 3.3 � 10�8), and rs6718520A in an intergenic region on chromosome 2p21, with THADA as the nearest flanking gene (OR, 1.17; p ¼ 3.4 � 10�8). The 3 new loci do not have a strong cis effect on RNA expression in PBMCs. Ten other susceptibility loci had a suggestive p < 1 � 10�6, some of these loci have evidence of association in other inflammatory diseases (ie, IL12B, TAGAP, PLEK, and ZMIZ1). Interpretation: We have performed a meta-analysis of GWAS in MS that more than doubles the size of previous gene discovery efforts and highlights 3 novel MS susceptibility loci. These and additional loci with suggestive evidence of association are excellent candidates for further investigations to refine and validate their role in the genetic architecture of MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted an association study across the human leukocyte antigen (HLA) complex to identify loci associated with multiple sclerosis (MS). Comparing 1927 SNPs in 1618 MS cases and 3413 controls of European ancestry, we identified seven SNPs that were independently associated with MS conditional on the others (each ). All associations were significant in an independent replication cohort of 2212 cases and 2251 controls () and were highly significant in the combined dataset (). The associated SNPs included proxies for HLA-DRB1*15:01 and HLA-DRB1*03:01, and SNPs in moderate linkage disequilibrium (LD) with HLA-A*02:01, HLA-DRB1*04:01 and HLA-DRB1*13:03. We also found a strong association with rs9277535 in the class II gene HLA-DPB1 (discovery set , replication set , combined ). HLA-DPB1 is located centromeric of the more commonly typed class II genes HLA-DRB1, -DQA1 and -DQB1. It is separated from these genes by a recombination hotspot, and the association is not affected by conditioning on genotypes at DRB1, DQA1 and DQB1. Hence rs9277535 represents an independent MS-susceptibility locus of genome-wide significance. It is correlated with the HLA-DPB1*03:01 allele, which has been implicated previously in MS in smaller studies. Further genotyping in large datasets is required to confirm and resolve this association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a serious cause of neurological disability among young adults. The clinical course remains difficult to predict, and the pathogenesis of the disease is still modestly understood. Autoimmunity is thought to be a key aspect of the disease, with autoreactive T cells thought to mediate central nervous system (CNS) inflammation to some extent. Toll-like receptors are known to mediate cellular recognition of pathogens by way of patterns of molecular presentation. Toll-like receptor 3 is coded by the gene TLR3 and is recognized as an important factor in virus recognition and is known to be involved in the expression of neuroprotective mediators. We set out to investigate two variations within the TLR3 gene, an 8 bp insertion-deletion \[-/A](8) and a single base-pair variation C1236T, in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We used capillary gel electrophoresis and TaqMan genotyping assay techniques to resolve genotypes for each marker, respectively. Our work found no significant difference between frequencies for TLR3 \[-/A](8) by genotype (chi(2)=1.03, p=0.60) or allele (chi(2)=1.09, p=0.30). Similarly, we found no evidence for the association of TLR3 C1236T by genotype (chi(2)=0.35, p=0.84) or allele frequency (chi(2)=0.31, p=0.58). This work reveals no evidence to suggest that these markers are associated with MS in the tested population. Although the role of TLR3 and the wider toll-like receptor family remain significant in neurological and CNS inflammatory disorders, our current work does not support a role for the two tested variants in this gene with regard to MS susceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent association studies in multiple sclerosis (MS) have identified and replicated several single nucleotide polymorphism (SNP) susceptibility loci including CLEC16A, IL2RA, IL7R, RPL5, CD58, CD40 and chromosome 12q13–14 in addition to the well established allele HLA-DR15. There is potential that these genetic susceptibility factors could also modulate MS disease severity, as demonstrated previously for the MS risk allele HLA-DR15. We investigated this hypothesis in a cohort of 1006 well characterised MS patients from South-Eastern Australia. We tested the MS-associated SNPs for association with five measures of disease severity incorporating disability, age of onset, cognition and brain atrophy. We observed trends towards association between the RPL5 risk SNP and time between first demyelinating event and relapse, and between the CD40 risk SNP and symbol digit test score. No associations were significant after correction for multiple testing. We found no evidence for the hypothesis that these new MS disease risk-associated SNPs influence disease severity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify multiple sclerosis (MS) susceptibility loci, we conducted a genome-wide association study (GWAS) in 1,618 cases and used shared data for 3,413 controls. We performed replication in an independent set of 2,256 cases and 2,310 controls, for a total of 3,874 cases and 5,723 controls. We identified risk-associated SNPs on chromosome 12q13-14 (rs703842, P = 5.4 x 10(-11); rs10876994, P = 2.7 x 10(-10); rs12368653, P = 1.0 x 10(-7)) and upstream of CD40 on chromosome 20q13 (rs6074022, P = 1.3 x 10(-7); rs1569723, P = 2.9 x 10(-7)). Both loci are also associated with other autoimmune diseases. We also replicated several known MS associations (HLA-DR15, P = 7.0 x 10(-184); CD58, P = 9.6 x 10(-8); EVI5-RPL5, P = 2.5 x 10(-6); IL2RA, P = 7.4 x 10(-6); CLEC16A, P = 1.1 x 10(-4); IL7R, P = 1.3 x 10(-3); TYK2, P = 3.5 x 10(-3)) and observed a statistical interaction between SNPs in EVI5-RPL5 and HLA-DR15 (P = 0.001).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a serious neurological disorder affecting young Caucasian individuals, usually with an age of onset at 18 to 40 years old. Females account for approximately 60x of MS cases and the manifestation and course of the disease is highly variable from patient to patient. The disorder is characterised by the development of plaques within the central nervous system (CNS). Many gene expression studies have been undertaken to look at the specific patterns of gene transcript levels in MS. Human tissues and experimental mice were used in these gene-profiling studies and a very valuable and interesting set of data has resulted from these various expression studies. In general, genes showing variable expression include mainly immunological and inflammatory genes, stress and antioxidant genes, as well as metabolic and central nervous system markers. Of particular interest are a number of genes localised to susceptible loci previously shown to be in linkage with MS. However due to the clinical complexity of the disease, the heterogeneity of the tissues used in expression studies, as well as the variable DNA chips/membranes used for the gene profiling, it is difficult to interpret the available information. Although this information is essential for the understanding of the pathogenesis of MS, it is difficult to decipher and define the gene pathways involved in the disorder. Experiments in gene expression profiling in MS have been numerous and lists of candidates are now available for analysis. Researchers have investigated gene expression in peripheral mononuclear white blood cells (PBMCs), in MS animal models Experimental Allergic Encephalomyelitis (EAE) and post mortem MS brain tissues. This review will focus on the results of these studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our laboratory, we have developed methods in real-time detection and quantitative-polymerase chain reaction (Q-PCR) to analyse the relative levels of gene expression in post mortem brain tissues. We have then applied this method to examine differences in gene activity between normal white matter (NWM) and plaque tissue from multiple sclerosis (MS) patients. Genes were selected based on their association with pathology and through identification by previously conducted global gene expression analysis. Plaque tissue was obtained from secondary progressive (SP) patients displaying chronic active, as well as acute pathologies; while NWM from the same location was obtained from age- and sex-matched controls (normal patients). In this study, we used both SYBR Green I supplementation and commercially available mixes to assess both comparative and absolute levels of gene activity. The results of both methods compared favourably for four of the five genes examined (P < 0.05, Pearsons), while differences in gene expression between chronic active and acute pathologies were also identified. For example, a >50-fold increase in osteopontin (Spp1) and inositol 1-4-5 phosphate 3 kinase B (Itpkb) levels in acute plaques contrasted with the 5-fold or less increase in chronic active plaques (P < 0.05, unpaired t test). By contrast, there was no significant difference in the levels of the MS marker and calcium-dependent protease (Calpain, Capns1) in MS plaque tissue. In summary, Q-PCR analysis using SYBR Green I has allowed us to economically obtain what may be clinically significant information from small amounts of the CNS, providing an opportunity for further clinical investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) affecting most commonly the Caucasian population. Nitric oxide (NO) is a biological signaling and effector molecule and is especially important during inflammation. Inducible nitric oxide synthase (iNOS) is one of the three enzymes responsible for generating NO. It has been reported that there is an excessive production of NO in MS concordant with an increased expression of iNOS in MS lesions. This study investigated the role of a bi-allelic tetranucleotide polymorphism located in the promoter region of the human iNOS (NOS2A) gene in MS susceptibility. A group of MS patients (n = 101) were genotyped and compared to an age- and sex-matched group of healthy controls (n = 101). The MS group was subdivided into three subtypes, namely relapsing-remitting MS (RR-MS), secondary-progressive MS (SP-MS) and primary-progressive MS (PP-MS). Results of a chi-squared analysis and a Fisher's exact test revealed that allele and genotype distributions between cases and controls were not significantly different for the total population (chi(2) = 3.4, P(genotype) = 0.15; chi(2) = 3.4, P(allele) = 0.082) and for each subtype of MS (P > 0.05). This suggests that there is no direct association of this iNOS gene variant with MS susceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Several lines of evidence suggests that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but a complete mapping the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors which may be involved in one subtype may not be in others. We investigated the possibility that this network could be mapped using microarray technologies and modern bioinformatics methods on a dataset from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls, Methodology/Principal Findings We have used two different analytical methodologies: a differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that seem to be statistically overrepresented in genes which are either differentially expressed (or differentially co-expressed) in cases and controls (e.g. V$KROX_Q6, p-value < 3.31E-6; V$CREBP1_Q2, p-value < 9.93E-6, V$YY1_02, p-value < 1.65E-5). Conclusions/significance: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. Analysing the published literature we have found that these transcription factors are involved in the early T-lymphocyte specification and commitment as well as in oligodendrocytes dedifferentiation and development. The most significant transcription factors motifs were for the Early Growth response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Single nucleotide polymorphisms (SNPs) rs429358 (ε4) and rs7412 (ε2), both invoking changes in the amino-acid sequence of the apolipoprotein E (APOE) gene, have previously been tested for association with multiple sclerosis (MS) risk. However, none of these studies was sufficiently powered to detect modest effect sizes at acceptable type-I error rates. As both SNPs are only imperfectly captured on commonly used microarray genotyping platforms, their evaluation in the context of genome-wide association studies has been hindered until recently. Methods We genotyped 12 740 subjects hitherto not studied for their APOE status, imputed raw genotype data from 8739 subjects from five independent genome wide association studies datasets using the most recent high-resolution reference panels, and extracted genotype data for 8265 subjects from previous candidate gene assessments. Results Despite sufficient power to detect associations at genome-wide significance thresholds across a range of ORs, our analyses did not support a role of rs429358 or rs7412 on MS susceptibility. This included meta-analyses of the combined data across 13 913 MS cases and 15 831 controls (OR=0.95, p=0.259, and OR 1.07, p=0.0569, for rs429358 and rs7412, respectively). Conclusion Given the large sample size of our analyses, it is unlikely that the two APOE missense SNPs studied here exert any relevant effects on MS susceptibility.