38 resultados para microbiological assay
Resumo:
Forty-six archaeological specimens were treated by fire-assay and subsequently analysed by ICP-MS for selected precious metals: Ph, Pt and Au. The investigation was prompted by the possibility that archaeological samples could serve as "indicators" of the precious metal composition of the clays from the excavated sites. Therefore, the experimentally obtained concentrations were carefully studied to determine if there were anomalous levels of these precious metals in the deposits from which the specimens originated. Furthermore, the analytical data were used to establish if it was feasible to distinguish ancient potsherds based on precious metal concentrations, for employment as a basis in provenance studies.
Resumo:
Background: Cardiovascular disease is the leading cause of death in the world. Human C-reactive protein (CRP) has been used in the risk assessment of coronary events. Human saliva mirrors the body's health and well-being and is non-invasive, easy to collect and ideal for third world countries as well as for large patient screening. The aim was to establish a saliva CRP reference range and to demonstrate the clinical utility of salivary CRP levels in assessing the coronary events in a primary health care setting. Methods: We have used a homogeneous bead based assay to detect CRP levels in human saliva. We have developed a rapid 15 min (vs 90 min), sequential, one-step assay to detect CRP in saliva. Saliva was collected from healthy volunteers (n = 55, ages 20-70 years) as well as from cardiac patients (n = 28, ages 43-86 years). Results: The assay incubation time was optimised from 90 min to 15 mm and generated a positive correlation (n = 29, range 10-2189 pg/mL, r2 = 0.94; Passing Bablok slope 0.885. Intercept 0, p>0.10), meaning we could decrease the incubation time and produce equivalent results with confidence. The mean CRP level in the saliva of healthy human volunteers was 285 pg/mL and in cardiac patients was 1680 pg/mL (p<0.01). Analysis of CRP concentrations in paired serum and saliva samples from cardiac patients gave a positive correlation (r2 = 0.84, p<0.001) and the salivary CRP concentration capable of distinguishing healthy from diseased patients. Conclusions: The results suggest that this minimally invasive, rapid and sensitive assay will be useful in large patient screening studies for risk assessment of coronary events. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This project developed and assessed a standard operating procedure for monitoring microbiological aerosol levels and dispersal from Australian industrial composting facilities. Development occurred via seasonal monitoring of such operations with evaluation of optimal microbial indicator organisms, sampling and analysis logistics. The resultant procedure allows practical end-user assessment of compost-associated bioaerosol levels, and potential health risks to proximal residential populations encroaching on such composting facilities and on-site industrial operations personnel.
Resumo:
Background Pollens of the Panicoideae subfamily of grasses including Bahia (Paspalum notatum) are important allergen sources in subtropical regions of the world. An assay for specific IgE to the major molecular allergenic component, Pas n 1, of Bahia grass pollen (BaGP) would have immunodiagnostic utility for patients with pollen allergy in these regions. Methods Biotinylated Pas n 1 purified from BaGP was coated onto streptavidin ImmunoCAPs. Subjects were assessed by clinical history of allergic rhinitis and skin prick test (SPT) to aeroallergens. Serum total, BaGP-specific and Pas n 1-specific IgE were measured. Results: Pas n 1 IgE concentrations were highly correlated with BaGP SPT (r = 0.795, p < 0.0001) and BaGP IgE (r = 0.915, p < 0.0001). At 0.23 kU/l Pas n 1 IgE, the diagnostic sensitivity (92.4%) and specificity (93.1%) for the detection of BaGP allergy was high (area under receiver operator curve 0.960, p < 0.0001). The median concentrations of Pas n 1 IgE in non-Atopic subjects (0.01 kU/l, n = 67) and those with other allergies (0.02 kU/l, n = 59) showed no inter-group difference, whilst grass pollen-Allergic patients with allergic rhinitis showed elevated Pas n 1 IgE (6.71 kU/l, n = 182, p < 0.0001). The inter-Assay coefficient of variation for the BaGP-Allergic serum pool was 6.92%. Conclusions Pas n 1 IgE appears to account for most of the BaGP-specific IgE. This molecular component immunoassay for Pas n 1 IgE has potential utility to improve the sensitivity and accuracy of diagnosis of BaGP allergy for patients in subtropical regions.
Resumo:
Background: Recently there have been efforts to derive safe, efficient processes to rule out acute coronary syndrome (ACS) in emergency department (ED) chest pain patients. We aimed to prospectively validate an ACS assessment pathway (the 2-Hour Accelerated Diagnostic Protocol to Assess Patients with Chest Pain Symptoms Using Contemporary Troponins as the Only Biomarker (ADAPT) pathway) under pragmatic ED working conditions. Methods: This prospective cohort study included patients with atraumatic chest pain in whom ACS was suspected but who did not have clear evidence of ischaemia on ECG. Thrombolysis in myocardial infarction (TIMI) score and troponin (TnI Ultra) were measured at ED presentation, 2 h later and according to current national recommendations. The primary outcome of interest was the occurrence of major adverse cardiac events (MACE) including prevalent myocardial infarction (MI) at 30 days in the group who had a TIMI score of 0 and had presentation and 2-h TnI assays <99th percentile. Results: Eight hundred and forty patients were studied of whom 177 (21%) had a TIMI score of 0. There were no MI, MACE or revascularization in the per protocol and intention-to-treat 2-h troponin groups (0%, 95% confidence interval (CI) 0% to 4.5% and 0%, 95% CI 0% to 3.8%, respectively). The negative predictive value (NPV) was 100% (95% CI 95.5% to 100%) and 100% (95% CI 96.2% to 100%), respectively. Conclusions: A 2-h accelerated rule-out process for ED chest pain patients using electrocardiography, a TIMI score of 0 and a contemporary sensitive troponin assay accurately identifies a group at very low risk of 30-day MI or MACE.
Resumo:
Background: Standard methods for quantifying IncuCyte ZOOM™ assays involve measurements that quantify how rapidly the initially-vacant area becomes re-colonised with cells as a function of time. Unfortunately, these measurements give no insight into the details of the cellular-level mechanisms acting to close the initially-vacant area. We provide an alternative method enabling us to quantify the role of cell motility and cell proliferation separately. To achieve this we calibrate standard data available from IncuCyte ZOOM™ images to the solution of the Fisher-Kolmogorov model. Results: The Fisher-Kolmogorov model is a reaction-diffusion equation that has been used to describe collective cell spreading driven by cell migration, characterised by a cell diffusivity, D, and carrying capacity limited proliferation with proliferation rate, λ, and carrying capacity density, K. By analysing temporal changes in cell density in several subregions located well-behind the initial position of the leading edge we estimate λ and K. Given these estimates, we then apply automatic leading edge detection algorithms to the images produced by the IncuCyte ZOOM™ assay and match this data with a numerical solution of the Fisher-Kolmogorov equation to provide an estimate of D. We demonstrate this method by applying it to interpret a suite of IncuCyte ZOOM™ assays using PC-3 prostate cancer cells and obtain estimates of D, λ and K. Comparing estimates of D, λ and K for a control assay with estimates of D, λ and K for assays where epidermal growth factor (EGF) is applied in varying concentrations confirms that EGF enhances the rate of scratch closure and that this stimulation is driven by an increase in D and λ, whereas K is relatively unaffected by EGF. Conclusions: Our approach for estimating D, λ and K from an IncuCyte ZOOM™ assay provides more detail about cellular-level behaviour than standard methods for analysing these assays. In particular, our approach can be used to quantify the balance of cell migration and cell proliferation and, as we demonstrate, allow us to quantify how the addition of growth factors affects these processes individually.
Resumo:
Escherichia coli sequence type 131 (ST131) have emerged as a pandemic lineage of important multidrug resistant pathogens worldwide. Despite many studies examining the epidemiology of ST131, only a few studies to date have investigated the capacity of ST131 strains to form biofilms. Some of these studies have reported contrasting findings, with no specific ST131 biofilm-promoting factors identified. Here we examined a diverse collection of ST131 isolates for in vitro biofilm formation in different media and assay conditions, including urine from healthy adult women. We found significant differences among strains and assay conditions, which offers an explanation for the contrasting findings reported by previous studies using a single condition. Importantly, we showed that expression of type 1 fimbriae is a critical determinant for biofilm formation by ST131 strains and that inhibition of the FimH adhesin significantly reduces biofilm formation. We also offer direct genetic evidence for the contribution of type 1 fimbriae in biofilm formation by the reference ST131 strain EC958, a representative of the clinically dominant H30-Rx ST131 subgroup. This is the first study of ST131 biofilm formation in biologically relevant conditions and paves the way for the application of FimH inhibitors in treating drug resistant ST131 biofilm infections.
Resumo:
Context: Pheochromocytomas and paragangliomas (PPGLs) are heritable neoplasms that can be classified into gene-expression subtypes corresponding to their underlying specific genetic drivers. Objective: This study aimed to develop a diagnostic and research tool (Pheo-type) capable of classifying PPGL tumors into gene-expression subtypes that could be used to guide and interpret genetic testing, determine surveillance programs, and aid in elucidation of PPGL biology. Design: A compendium of published microarray data representing 205 PPGL tumors was used for the selection of subtype-specific genes that were then translated to the Nanostring gene-expression platform. A support vector machine was trained on the microarray dataset and then tested on an independent Nanostring dataset representing 38 familial and sporadic cases of PPGL of known genotype (RET, NF1, TMEM127, MAX, HRAS, VHL, and SDHx). Different classifier models involving between three and six subtypes were compared for their discrimination potential. Results: A gene set of 46 genes and six endogenous controls was selected representing six known PPGL subtypes; RTK1–3 (RET, NF1, TMEM127, and HRAS), MAX-like, VHL, and SDHx. Of 38 test cases, 34 (90%) were correctly predicted to six subtypes based on the known genotype to gene-expression subtype association. Removal of the RTK2 subtype from training, characterized by an admixture of tumor and normal adrenal cortex, improved the classification accuracy (35/38). Consolidation of RTK and pseudohypoxic PPGL subtypes to four- and then three-class architectures improved the classification accuracy for clinical application. Conclusions: The Pheo-type gene-expression assay is a reliable method for predicting PPGL genotype using routine diagnostic tumor samples.