49 resultados para lizard, venom, frog, skin secretion, genomic DNA, molecular phylogenetics, drug discovery
Resumo:
Background-Although dyslipoproteinemia is associated with arterial atherothrombosis, little is known about plasma lipoproteins in venous thrombosis patients. Methods and Results-We determined plasma lipoprotein subclass concentrations using nuclear magnetic resonance spectroscopy and antigenic levels of apolipoproteins AI and B in blood samples from 49 male venous thrombosis patients and matched controls aged <55 years. Venous thrombosis patients had significantly lower levels of HDL particles, large HDL particles, HDL cholesterol, and apolipoprotein AI and significantly higher levels of LDL particles and small LDL particles. The quartile-based odds ratios for decreased HDL particle and apolipoprotein AI levels in patients compared with controls were 6.5 and 6.0 (95% CI, 2.3 to 19 and 2.1 to 17), respectively. Odds ratios for apolipoprotein B/apolipoprotein AI ratio and LDL cholesterol/HDL cholesterol ratio were 6.3 and 2.7 (95% CI, 1.9 to 21 and 1.1 to 6.5), respectively. When polymorphisms in genes for hepatic lipase, endothelial lipase, and cholesteryl ester transfer protein were analyzed, patients differed significantly from controls in the allelic frequency for the TaqI B1/B2 polymorphism in cholesteryl ester transfer protein, consistent with the observed pattern of lower HDL and higher LDL. Conclusions-Venous thrombosis in men aged <55 years old is associated with dyslipoproteinemia involving lower levels of HDL particles, elevated levels of small LDL particles, and an elevated ratio of apolipoprotein B/apolipoprotein AI. This dyslipoproteinemia seems associated with a related cholesteryl ester transfer protein genotype difference. © 2005 American Heart Association, Inc.
Resumo:
Activated protein C resistance (APCR), the most common risk factor for venous thrombosis, is the result of a G to A base substitution at nucleotide 1691 (R506Q) in the factor V gene. Current techniques to detect the factor V Leiden mutation, such as determination of restriction length polymorphisms, do not have the capacity to screen large numbers of samples in a rapid, cost- effective test. The aim of this study was to apply the first nucleotide change (FNC) technology, to the detection of the factor V Leiden mutation. After preliminary amplification of genomic DNA by polymerase chain reaction (PCR), an allele-specific primer was hybridised to the PCR product and extended using fluorescent terminating dideoxynucleotides which were detected by colorimetric assay. Using this ELISA-based assay, the prevalence of the factor V Leiden mutation was determined in an Australian blood donor population (n = 500). A total of 18 heterozygotes were identified (3.6%) and all of these were confirmed with conventional MnlI restriction digest. No homozygotes for the variant allele were detected. We conclude from this study that the frequency of 3.6% is compatible with others published for Caucasian populations. In addition, the FNC technology shows promise as the basis for a rapid, automated DNA based test for factor V Leiden.
Resumo:
Smut fungi are important pathogens of grasses, including the cultivated crops maize, sorghum and sugarcane. Typically, smut fungi infect the inflorescence of their host plants. Three genera of smut fungi (Ustilago, Sporisorium and Macalpinomyces) form a complex with overlapping morphological characters, making species placement problematic. For example, the newly described Macalpinomyces mackinlayi possesses a combination of morphological characters such that it cannot be unambiguously accommodated in any of the three genera. Previous attempts to define Ustilago, Sporisorium and Macalpinomyces using morphology and molecular phylogenetics have highlighted the polyphyletic nature of the genera, but have failed to produce a satisfactory taxonomic resolution. A detailed systematic study of 137 smut species in the Ustilago-Sporisorium- Macalpinomyces complex was completed in the current work. Morphological and DNA sequence data from five loci were assessed with maximum likelihood and Bayesian inference to reconstruct a phylogeny of the complex. The phylogenetic hypotheses generated were used to identify morphological synapomorphies, some of which had previously been dismissed as a useful way to delimit the complex. These synapomorphic characters are the basis for a revised taxonomic classification of the Ustilago-Sporisorium-Macalpinomyces complex, which takes into account their morphological diversity and coevolution with their grass hosts. The new classification is based on a redescription of the type genus Sporisorium, and the establishment of four genera, described from newly recognised monophyletic groups, to accommodate species expelled from Sporisorium. Over 150 taxonomic combinations have been proposed as an outcome of this investigation, which makes a rigorous and objective contribution to the fungal systematics of these important plant pathogens.
Resumo:
Cockatoos are the distinctive family Cacatuidae, a major lineage of the order of parrots (Psittaciformes) and distributed throughout the Australasian region of the world. However, the evolutionary history of cockatoos is not well understood. We investigated the phylogeny of cockatoos based on three mitochondrial and three nuclear DNA genes obtained from 16 of 21 species of Cacatuidae. In addition, five novel mitochondrial genomes were used to estimate time of divergence and our estimates indicate Cacatuidae diverged from Psittacidae approximately 40.7 million years ago (95% CI 51.6–30.3 Ma) during the Eocene. Our data shows Cacatuidae began to diversify approximately 27.9 Ma (95% CI 38.1–18.3 Ma) during the Oligocene. The early to middle Miocene (20–10 Ma) was a significant period in the evolution of modern Australian environments and vegetation, in which a transformation from mainly mesic to xeric habitats (e.g., fire-adapted sclerophyll vegetation and grasslands) occurred. We hypothesize that this environmental transformation was a driving force behind the diversification of cockatoos. A detailed multi-locus molecular phylogeny enabled us to resolve the phylogenetic placements of the Palm Cockatoo (Probosciger aterrimus), Galah (Eolophus roseicapillus), Gang-gang Cockatoo (Callocephalon fimbriatum) and Cockatiel (Nymphicus hollandicus), which have historically been difficult to place within Cacatuidae. When the molecular evidence is analysed in concert with morphology, it is clear that many of the cockatoo species’ diagnostic phenotypic traits such as plumage colour, body size, wing shape and bill morphology have evolved in parallel or convergently across lineages.
Resumo:
With well over 700 species, the Tribe Dacini is one of the most species-rich clades within the dipteran family Tephritidae, the true fruit flies. Nearly all Dacini belong to one of two very large genera, Dacus Fabricius and Bactrocera Macquart. The distribution of the genera overlap in or around the Indian subcontinent, but the greatest diversity of Dacus is in Africa and the greatest diversity of Bactrocera is in south-east Asia and the Pacific. The monophyly of these two genera has not been rigorously established, with previous phylogenies only including a small number of species and always heavily biased to one genus over the other. Moreover, the subgeneric taxonomy within both genera is complex and the monophyly of many subgenera has not been explicitly tested. Previous hypotheses about the biogeography of the Dacini based on morphological reviews and current distributions of taxa have invoked an out-of-India hypothesis; however this has not been tested in a phylogenetic framework. We attempted to resolve these issues with a dated, molecular phylogeny of 125 Dacini species generated using 16S, COI, COII and white eye genes. The phylogeny shows that Bactrocera is not monophyletic, but rather consists of two major clades: Bactrocera s.s. and the ‘Zeugodacus group of subgenera’ (a recognised, but informal taxonomic grouping of 15 Bactrocera subgenera). This ‘Zeugodacus’ clade is the sister group to Dacus, not Bactrocera and, based on current distributions, split from Dacus before that genus moved into Africa. We recommend that taxonomic consideration be given to raising Zeugodacus to genus level. Supportive of predictions following from the out-of-India hypothesis, the first common ancestor of the Dacini arose in the mid-Cretaceous approximately 80 mya. Major divergence events occurred during the Indian rafting period and diversification of Bactrocera apparently did not begin until after India docked with Eurasia (50–35 mya). In contrast, diversification in Dacus, at approximately 65 mya, apparently began much earlier than predicted by the out-of-India hypothesis, suggesting that, if the Dacini arose on the Indian plate, then ancestral Dacus may have left the plate in the mid to late Cretaceous via the well documented India–Madagascar–Africa migration route. We conclude that the phylogeny does not disprove the predictions of an out-of-India hypothesis for the Dacini, although modification of the original hypothesis is required.
Resumo:
Background. A variety of interactions between up to three different movement proteins (MPs), the coat protein (CP) and genomic DNA mediate the inter- and intra-cellular movement of geminiviruses in the genus Begomovirus. Although movement of viruses in the genus Mastrevirus is less well characterized, direct interactions between a single MP and the CP of these viruses is also clearly involved in both intra- and intercellular trafficking of virus genomic DNA. However, it is currently unknown how specific these MP-CP interactions are, nor how disruption of these interactions might impact on virus viability. Results. Using chimaeric genomes of two strains of Maize streak virus (MSV) we adopted a genetic approach to investigate the gross biological effects of interfering with interactions between virus MP and CP homologues derived from genetically distinct MSV isolates. MP and CP genes were reciprocally exchanged, individually and in pairs, between maize (MSV-Kom)- and Setaria sp. (MSV-Set)-adapted isolates sharing 78% genome-wide sequence identity. All chimaeras were infectious in Zea mays c.v. Jubilee and were characterized in terms of symptomatology and infection efficiency. Compared with their parental viruses, all the chimaeras were attenuated in symptom severity, infection efficiency, and the rate at which symptoms appeared. The exchange of individual MP and CP genes resulted in lower infection efficiency and reduced symptom severity in comparison with exchanges of matched MP-CP pairs. Conclusion. Specific interactions between the mastrevirus MP and CP genes themselves and/or their expression products are important determinants of infection efficiency, rate of symptom development and symptom severity. © 2008 van der Walt et al; licensee BioMed Central Ltd.
Resumo:
The aim of this study was to investigate through direct sequencing the insulin receptor (INSR) gene in DNA samples from a migraine affected family previously showing linkage to chromosome 19p13 in an attempt to detect disease associated mutations. Migraine is a common debilitating disorder with a significant genetic component. At present, the number and type of genes involved in the common forms of migraine are not clear. The INSR gene on chromosome 19p13.3-13.2 is a gene of interest since a number of single nucleotide polymorphisms (SNPs) located within the gene have been implicated in migraine with (MA) and without aura (MO). Six DNA samples obtained from non-founding migraine affected members of migraine family 1 (MF1) were used in this study. Genomic DNA was sequenced for the INSR gene in exons 1-22 and the promoter region. In the six migraine family member samples, previously reported SNPs were detected within two exonic DNA coding regions of the INSR gene. These SNPs, in exons 13 and 17, do not alter the normal INSR polypeptide sequence. In addition, intron 7 also revealed a DNA base sequence variation. For the 5' untranslated promoter region of the gene, no mutations or polymorphisms were detected. In conclusion, this study detected no INSR mutations in affected members of a chromosome 19 linked migraine pedigree. Hence, migraine linkage to this chromosomal region may involve other candidate genes.
Resumo:
Cervical cancer is one of the world's major health issues. Despite many studies in this field, the carcinogenetic events of malignant conversion in cervical tumours have not been significantly characterised. The first aim of this project was to investigate the mutation status of the tumour suppressor gene- Phosphatase and Tension Homolog (PTEN)- in cervical cancer tissue. The second aim of this study was the analysis in the same cervical cancer tissue for aberrations in the mitochondrial electron transport chain subunit gene NDUFB8, which is localised to the same chromosomal contig as PTEN. The third aim was the evaluation of the potential therapeutic anti-cancer drug 2,4-Thiazolidinediones (TZDs) and its affect in regulating the PTEN protein in a cervical cancer cell line (HeLa). To approach the aims, paraffin-embedded cancerous cervical tissue and non-cancerous cervical tissue were obtained. DNA recovered from those tissues was then used to investigate the putative genomic changes regarding the NDUFB8 gene utilising SYBR Green I Real-Time PCR. The PTEN gene was studied via Dual-Labelled probe Real-Time PCR. To investigate the protein expression change of the PTEN protein, HeLa cells were firstly treated with different concentrations of 2,4-Thiazolidinediones and the level of PTEN protein expression was then observed utilising standard protein assays. Results indicated that there were putative copy-number changes between the cancerous cervical tissue and non-cancerous cervical tissue, with regard to the PTEN locus. This implies a potential gain of the PTEN gene in cancerous cervical tissue. With regards to normal cervical tissue versus cancerous cervical tissue no significant melting temperature differences were observed with the SYBR Green I Real-Time PCR in respect to the NDUFB8 gene. A putative up-regulation of PTEN protein was observed in TZD treated HeLa cells. © 2008 Springer Science+Business Media, LLC.
Resumo:
One of the hallmarks of progressive renal disease is the development of tubulointerstitial fibrosis. This is frequently preceded by macrophage infiltration, raising the possibility that macrophages relay fibrogenic signals to resident tubulointerstitial cells. The aim of this study was to investigate the potentially fibrogenic role of interleukin-1beta (IL-1beta), a macrophage-derived inflammatory cytokine, on cortical fibroblasts (CFs). Primary cultures of human renal CFs were established and incubated for 24 hours in the presence or absence of IL-1beta. We found that IL-1beta significantly stimulated DNA synthesis (356.7% +/- 39% of control, P <.003), fibronectin secretion (261.8 +/- 11% of control, P <.005), collagen type 1 production, (release of procollagen type 1 C-terminal-peptide, 152.4% +/- 26% of control, P <.005), transforming growth factor-beta (TGF-beta) secretion (211% +/- 37% of control, P <.01), and nitric oxide (NO) production (342.8% +/- 69% of control, P <.002). TGF-beta (1 ng/mL) and the phorbol ester phorbol 12-myristate 13-acetate (PMA, 25 nmol/L) produced fibrogenic effects similar to those of IL-1beta. Neither a NO synthase inhibitor (N(G)-methyl-l-arginine, 1 mmol/L) nor a protein kinase C (PKC) inhibitor (bis-indolylmaleimide 1, 1 micromol/L) altered the enhanced level of fibronectin secretion or DNA synthesis seen in response to IL-1beta treatment. However, addition of a TGF-beta-neutralizing antibody significantly reduced IL-1beta-induced fibronectin secretion (IL-1beta + IgG, 262% +/- 72% vs IL-1beta + alphaTGF-beta 156% +/- 14%, P <.02), collagen type 1 production (IL-1beta + IgG, 176% +/- 28% vs IL-1beta + alphaTGF-beta, 120% +/- 14%, P <.005) and abrogated IL-1beta-induced DNA synthesis (245% +/- 49% vs 105% +/- 21%, P <.005). IL-1beta significantly stimulated CF DNA synthesis and production of fibronectin, collagen type 1, TGFbeta, and NO. The fibrogenic and proliferative action of IL-1beta on CF appears not to involve activation of PKC or production of NO but is at least partly TGFbeta-dependent.
Resumo:
Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12–C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5′- and 3′-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications.
Resumo:
BACKGROUND AND OBJECTIVES Polymorphisms of the VEGF gene are known to affect the biological behaviour of cancers but have seldom been studied in thyroid cancer. The aim of the current study is to evaluate the prevalence and relevance of VEGF-A polymorphisms and mRNA expression in papillary thyroid carcinoma (PTC). MATERIALS AND METHODS Genomic DNA and total RNA were isolated from paraffin-embedded tissue from 91 PTC (51 conventional PTC and 40 follicular variant) and 78 control thyroid tissues. Three DNA polymorphisms (+936C > T, +405C > G and -141A > C) in the 3' and 5' untranslated region (3'-UTR, 5'-UTR) of VEGF-A were studied using PCR and RFLP. Also, the mRNA expression of VEGF-A in these tissues was studied by real-time PCR. RESULTS Distribution of polymorphisms in the 5'-UTR (VEGF-VEGF -141A > C and +405C > G) and 3'-UTR (VEGF +936C > T) were all significantly different in PTC and benign thyroid tissue (p = 0.0001, 0.001 and 0.028 respectively). The VEGF -141 C allele was more common in PTC with lymph node metastases (p = 0.026). VEGF + 405 Galleles andVEGF +936 CC genotype were more common in PTC of advanced pathological staging (p = 0.018 and 0.017 respectively). Also, increased expression of VEGF-A mRNA was noted in PTC compared to control (p = 0.009). Within the group of patients with conventional PTC, those with lymph nodal metastases had a higher level of VEGF-A mRNA expression than other patients (p = 0.0003). CONCLUSION These findings suggest that VEGF polymorphisms and mRNA expression may predict the aggressiveness behaviour of thyroid cancer.
Resumo:
The phylogenetic relationships of the beetle superfamily Tenebrionoidea are investigated using the most comprehensive genetic data set compiled to date. With ∼34,000 described species in approximately 1250 genera and 28 families, Tenebrionoidea represent one of the most diverse and species-rich superfamilies of beetles. The interfamilial relationships of the Tenebrionoidea are poorly known; previous morphological and molecular phylogenies recovered few well-supported and often conflicting relationships between families. Here we present a molecular phylogeny of Tenebrionoidea based on genes commonly used to resolve family and superfamily-level phylogenies of beetles (18S, 28S, 16S, 12S, tRNA Val and COI). The alignment spanned over 6.5 KB of DNA sequence and over 300 tenebrionoid genera from 24 of the 28 families were sampled. Maximum Likelihood and Bayesian analysis could not resolve deeper level divergences within the superfamily and very few relationships between families were supported. Increasing gene coverage in the alignment by removing taxa with missing data did not improve clade support but when rogue taxa were removed increased resolution was recovered. Investigation of signal strength suggested conflicting phylogenetic signal was present in the standard genes used for beetle phylogenetics, even when rogue taxa were removed. Our study of Tenebrionoidea highlights that even with relatively comprehensive taxon sampling within a lineage, this standard set of genes is unable to resolve relationships within this superfamily.
Resumo:
Electropermeabilization (EP) is an effective method of gene transfer into different tissues. During EP, reactive oxygen species (ROS) are formed, which could affect transfection efficiency. The role of generated ROS and the role of antioxidants in electrotransfer in myoblasts in vitro and in Musculus tibialis cranialis in mice were, therefore, investigated. We demonstrate in the study that during EP of C2C12 myoblasts, ROS are generated on the surface of the cells, which do not induce long-term genomic DNA damage. Plasmid DNA for transfection (pEGFP-N1), which is present outside the cells during EP, neutralizes the generated ROS. The ROS generation is proportional to the amplitude of the electric pulses and can be scavenged by antioxidants, such as vitamin C or tempol. When antioxidants were used during gene electrotransfer, the transfection efficiency of C2C12 myoblasts was statistically significantly increased 1.6-fold with tempol. Also in vivo, the transfection efficiency of M. tibialis cranialis in mice was statistically significantly increased 1.4-fold by tempol. The study indicates that ROS are generated on cells during EP and can be scavenged by antioxidants. Specifically, tempol can be used to improve gene electrotransfer into the muscle and possibly also to other tissues.
Resumo:
The importance of the isoform CYP2E1 of the human cytochrome P-450 superfamily of enzymes for occupational and environmental medicine is derived from its unique substrate spectrum that includes a number of highly important high-production chemicals, such as aliphatic and aromatic hydrocarbons, solvents and industrial monomers (i.a. alkanes, alkenes, aromatic and halogenated hydrocarbons). Many polymorphic genes, such as CYP2E1, show considerable differences in allelic distribution between different human populations. The polymorphic nature of the human CYP2E1 gene is significant for inter-individual differences in toxicity of its substrates. Since the substrate spectrum of CYP2E1 includes many compounds of basic relevance to industrial toxicology, a rationale for metabolic interactions of different CYP2E1 substrates is provided. In-depth research into the inter-individual phenotypic differences of human CYP2E1 enzyme activities was enabled by the recognition that the 6-hydroxylation of the drug chlorzoxazone is mediated by CYP2E1. Studies on CYP2E1 phenotyping have pointed to inter-individual variations in enzyme activities. There are consistent ethnic differences in CYP2E1 enzyme expression, mostly demonstrated between European and Japanese populations, which point to a major impact of genetic factors. The most frequently studied genetic polymorphisms are the restriction fragment length polymorphisms PstI/RsaI (mutant allele: CYP2E1*5B) located in the 5′-flanking region of the gene, as well as the DraI polymorphism (mutant allele: CYP2E1*6) located in intron 6. These polymorphisms are partly related, as they form the common allele designated CYP2E1*5A. Striking inter-ethnic differences between Europeans and Asians appear with respect to the frequencies of the CYP2E1*5A allele (only approximately 5% of Europeans are heterozygous, but 37% of Asians are, whilst 6% of Asians are homozygous). Available studies indicate a wide variation in human CYP2E1 expression, which are very likely based on complex gene-environment interactions. Major inter-ethnic differences are apparent on the genotyping and the phenotyping levels. Selected cases are presented where inter-ethnic variations of CYP2E1 may provide likely explanations for unexplained findings concerning industrial chemicals that are CYP2E1 substrates. Possible consequences of differential inter-individual and inter-ethnic susceptibilities are related to individual expressions of clinical symptoms of chemical toxicity, to results of biological monitoring of exposed workers, and to the interpretation of results of epidemiological or molecular-epidemiological studies.
Resumo:
The taxonomic position of the endemic New Zealand bat genus Mystacina has vexed systematists ever since its erection in 1843. Over the years the genus has been linked with many microchiropteran families and superfamilies. Most recent classifications place it in the Vespertilionoidea, although some immunological evidence links it with the Noctilionoidea (=Phyllostomoidea). We have sequenced 402 bp of the mitochondrial cytochrome b gene for M. tuberculata (Gray in Dieffenbach, 1843), and using both our own and published DNA sequences for taxa in both superfamilies, we applied different tree reconstruction methods to find the appropriate phylogeny and different methods of estimating confidence in the parts of the tree. All methods strongly support the classification of Mystacina in the Noctilionoidea. Spectral analysis suggests that parsimony analysis may be misleading for Mystacina's precise placement within the Noctilionoidea because of its long terminal branch. Analyses not susceptible to long-branch attraction suggest that the Mystacinidae is a sister family to the Phyllostomidae. Dating the divergence times between the different taxa suggests that the extant chiropteran families radiated around and shortly after the Cretaceous–Tertiary boundary. We discuss the biogeographical implications of classifying Mystacina within the Noctilionoidea and contrast our result with those classifications placing Mystacina in the Vespertilionoidea, concluding that evidence for the latter is weak.