34 resultados para labdane dimers
Resumo:
There is a growing need for new biodiagnostics that combine high throughput with enhanced spatial resolution and sensitivity. Gold nanoparticle (NP) assemblies with sub-10 nm particle spacing have the benefits of improving detection sensitivity via Surface enhanced Raman scattering (SERS) and being of potential use in biomedicine due to their colloidal stability. A promising and versatile approach to form solution-stable NP assemblies involves the use of multi-branched molecular linkers which allows tailoring of the assembly size, hot-spot density and interparticle distance. We have shown that linkers with multiple anchoring end-groups can be successfully employed as a linker to assemble gold NPs into dimers, linear NP chains and clustered NP assemblies. These NP assemblies with diameters of 30-120 nm are stable in solution and perform better as SERS substrates compared with single gold NPs, due to an increased hot-spot density. Thus, tailored gold NP assemblies are potential candidates for use as biomedical imaging agents. We observed that the hot-spot density and in-turn the SERS enhancement is a function of the linker polymer concentration and polymer architecture. New deep Raman techniques like Spatially Offset Raman Spectroscopy (SORS) have emerged that allow detection from beneath diffusely scattering opaque materials, including biological media such as animal tissue. We have been able to demonstrate that the gold NP assemblies could be detected from within both proteinaceous and high lipid containing animal tissue by employing a SORS technique with a backscattered geometry.
Resumo:
Model systems are critical to our understanding of self-assembly processes. As such, we have studied the surface self-assembly of a small and simple molecule, indole-2-carboxylic acid (I2CA). We combine density functional theory gas-phase (DFT) calculations with scanning tunneling microscopy to reveal details of I2CA assembly in two different solvents at the solution/solid interface, and on Au(111) in ultrahigh vacuum (UHV). In UHV and at the trichlorobenzene/highly oriented pyrolytic graphite (HOPG) interface, I2CA forms epitaxial lamellar structures based on cyclic OH⋯O carboxylic dimers. The structure formed at the heptanoic acid/HOPG interface is different and can be interpreted in a model where heptanoic acid molecules co-adsorb on the substrate with the I2CA, forming a bicomponent commensurate unit cell. DFT calculations of dimer energetics elucidate the basic building blocks of these structures, whereas calculations of periodic two-dimensional assemblies reveal the epitaxial effects introduced by the different substrates.
Resumo:
A Bi 2 × n surface net was grown on the Si(001) surface and studied with inverse photoemission, scanning tunnelling microscopy and ab initio and empirical pseudopotential calculations. The experiments demonstrated that Bi adsorption eliminates the dimer related π1* and π2* surface states, produced by correlated dimer buckling, leaving the bulk bandgap clear of unoccupied surface states. Ab initio calculations support this observation and demonstrate that the surface states derived from the formation of symmetric Bi dimers do not penetrate the fundamental bandgap of bulk Si. Since symmetric Bi dimers are an important structural component of the recently discovered Bi nanolines, that self-organize on Si(001) above the Bi desorption temperature, a connection will be made between our findings and the electronic structure of the nanolines.
Resumo:
The registry of bismuth dimers, integral components of the bismuth nanoline on Si(001), is examined. In contrast to the currently accepted view, the bismuth dimers are found to be in registry with the two-dimensional lattice created by the silicon dimers. The consequences of this finding are briefly explored.