91 resultados para l-fng
Resumo:
The field of literacy studies has always been challenged by the changing technologies that humans have used to express, represent and communicate their feelings, ideas, understandings and knowledge. However, while the written word has remained central to literacy processes over a long period, it is generally accepted that there have been significant changes to what constitutes ‘literate’ practice. In particular, the status of the printed word has been challenged by the increasing dominance of the image, along with the multimodal meaning-making systems facilitated by digital media. For example, Gunther Kress and other members of the New London Group have argued that the second half of the twentieth century saw a significant cultural shift from the linguistic to the visual as the dominant semiotic mode. This in turn, they suggest, was accompanied by a cultural shift ‘from page to screen’ as a dominant space of representation (e.g. Cope & Kalantzis, 2000; Kress, 2003; New London Group, 1996). In a similar vein, Bill Green has noted that we have witnessed a shift from the regime of the print apparatus to a regime of the digital electronic apparatus (Lankshear, Snyder and Green, 2000). For these reasons, the field of literacy education has been challenged to find new ways to conceptualise what is meant by ‘literacy’ in the twenty first century and to rethink the conditions under which children might best be taught to be fully literate so that they can operate with agency in today’s world.
Resumo:
Analytical and closed form solutions are presented in this paper for the vibration response of an L-shaped plate under a point force or a moment excitation. Inter-relationships between wave components of the source and the receiving plates are clearly defined. Explicit expressions are given for the quadratic quantities such as input power, energy flow and kinetic energy distributions of the L-shaped plate. Applications of statistical energy analysis (SEA) formulation in the prediction of the vibration response of finite coupled plate structures under a single deterministic forcing are examined and quantified. It is found that the SEA method can be employed to predict the frequency averaged vibration response and energy flow of coupled plate structures under a deterministic force or moment excitation when the structural system satisfies the following conditions: (1) the coupling loss factors of the coupled subsystems are known; (2) the source location is more than a quarter of the plate bending wavelength away from the source plate edges in the point force excitation case, or is more than a quarter wavelength away from the pair of source plate edges perpendicular to the moment axis in the moment excitation case due to the directional characteristic of moment excitations. SEA overestimates the response of the L-shaped plate when the source location is less than a quarter bending wavelength away from the respective plate edges owing to wave coherence effect at the plate boundary
Resumo:
Flexible paper-like ZnO nanowire films are fabricated and the effect of L-lysine passivation of the nanowire surfaces on improving the UV photoresponse is studied. We prepare three types of nanowires with different defect contents, and find that the L-lysine treatment can suppress the oxygen-vacancy-related photoluminescence as well as enhance the UV photoconduction. The nanowires with fewer defects gain larger enhancement of UV photoconduction after L-lysine treatment. Reproducible UV photoresponse of the devices in humid air is obtained due to L-lysine surface passivation, ruling out the influence of water molecules in degrading the UV photocurrent.
Resumo:
Retrotransposons are a class of transposable elements that represent a major fraction of the repetitive DNA of most eukaryotes. Their abundance stems from their expansive replication strategies. We screened and isolated sequence fragments of long terminal repeat (LTR), gypsy-like reverse transcriptase (rt) and gypsy-like envelope (env) domains, and two partial sequences of non-LTR retrotransposons, long interspersed element (LINE), in the clonally propagated allohexaploid sweet potato (Ipomoea batatas (L.) Lam.) genome. Using dot-blot hybridization, these elements were found to be present in the ~1597 Mb haploid sweet potato genome with copy numbers ranging from ~50 to ~4100 as observed in the partial LTR (IbLtr-1) and LINE (IbLi-1) sequences, respectively. The continuous clonal propagation of sweet potato may have contributed to such a multitude of copies of some of these genomic elements. Interestingly, the isolated gypsy-like env and gypsy-like rt sequence fragments, IbGy-1 (~2100 copies) and IbGy-2 (~540 copies), respectively, were found to be homologous to the Bagy-2 cDNA sequences of barley (Hordeum vulgare L.). Although the isolated partial sequences were found to be homologous to other transcriptionally active elements, future studies are required to determine whether they represent elements that are transcriptionally active under normal and (or) stressful conditions.
Resumo:
Regulatory sequences with endosperm specificity are essential for foreign gene expression in the desired tissue for both grain quality improvement and molecular pharming. In this study, promoters of seed storage α-kafirin genes coupled with signal sequence (ss) were isolated from Sorghum bicolor L. Moench genomic DNA by PCR. The α-kafirin promoter (α-kaf) contains endosperm specificity-determining motifs, prolamin-box, the O2-box 1, CATC, and TATA boxes required for α-kafirin gene expression in sorghum seeds. The constructs pMB-Ubi-gfp and pMB-kaf-gfp were microprojectile bombarded into various sorghum and sweet corn explants. GFP expression was detected on all explants using the Ubi promoter but only in seeds for the α-kaf promoter. This shows that the α-kaf promoter isolated was functional and demonstrated seed-specific GFP expression. The constructs pMB-Ubi-ss-gfp and pMB-kaf-ss-gfp were also bombarded into the same explants. Detection of GFP expression showed that the signal peptide (SP)::GFP fusion can assemble and fold properly, preserving the fluorescent properties of GFP.
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is the world’s fifth major cereal crop and holds importance as a construction material, food and fodder source. More recently, the potential of this plant as a biofuel source has been noted. Despite its agronomic importance, the use of sorghum production is being constrained by both biotic and abiotic factors. These challenges could be addressed by the use of genetic engineering strategies to complement conventional breeding techniques. However, sorghum is one of the most recalcitrant crops for genetic modification with the lack of an efficient tissue culture system being amongst the chief reasons. Therefore, the aim of this study was to develop an efficient tissue culture system for establishing regenerable embryogenic cell lines, micropropagation and acclimatisation for Sorghum bicolor and use this to optimise parameters for genetic transformation via Agrobacterium-mediated transformation and microprojectile bombardment. Using five different sorghum cultivars, SA281, 296B, SC49, Wray and Rio, numerous parameters were investigated in an attempt to establish an efficient and reproducible tissue culture and transformation system. Using immature embryos (IEs) as explants, regenerable embryogenic cell lines (ECLs) could only be established from cultivars SA281 and 296B. Large amounts of phenolics were produced from IEs of cultivars, SC49, Wary and Rio, and these compounds severely hindered callus formation and development. Cultivar SA281 also produced phenolics during regeneration. Attempts to suppress the production of these compounds in cultivars SA281 and SC49 using activated charcoal, PVP, ascorbic acid, citric acid and liquid filter paper bridge methods were either ineffective or had a detrimental effect on embryogenic callus formation, development and regeneration. Immature embryos sourced during summer were found to be far more responsive in vitro than those sourced during winter. In an attempt to overcome this problem, IEs were sourced from sorghum grown under summer conditions in either a temperature controlled glasshouse or a growth chamber. However, the performance of these explants was still inferior to that of natural summer-sourced explants. Leaf whorls, mature embryos, shoot tips and leaf primordia were found to be unsuitable as explants for establishing ECLs in sorghum cultivars SA281 and 296B. Using the florets of immature inflorescences (IFs) as explants, however, ECLs were established and regenerated for these cultivars, as well as for cultivar Tx430, using callus induction media, SCIM, and regeneration media, VWRM. The best in vitro responses, from the largest possible sized IFs, were obtained using plants at the FL-2 stage (where the last fully opened leaf was two leaves away from the flag leaf). Immature inflorescences could be stored at 25oC for up to three days without affecting their in vitro responses. Compared to IEs, the IFs were more robust in tissue culture and showed responses which were season and growth condition independent. A micropropagation protocol for sorghum was developed in this study. The optimum plant growth regulator (PGR) combination for the micropropagation of in vitro regenerated plantlets was found to be 1.0 mg/L BAP in combination with 0.5 mg/L NAA. With this protocol, cultivars 296B and SA281 produced an average of 57 and 13 off-shoots per plantlet, respectively. The plantlets were successfully acclimatised and developed into phenotypically normal plants that set seeds. A simplified acclimatisation protocol for in vitro regenerated plantlets was also developed. This protocol involved deflasking in vitro plantlets with at least 2 fully-opened healthy leaves and at least 3 roots longer than 1.5 cm, washing the media from the roots with running tap water, planting in 100 mm pots and placing in plastic trays covered with a clear plastic bag in a plant growth chamber. After seven days, the corners of the plastic cover were opened and the bags were completely removed after 10 days. All plantlets were successfully acclimatised regardless of whether 1:1 perlite:potting mix, potting mix, UC mix or vermiculite were used as potting substrates. Parameters were optimised for Agrobacterium-mediated transformation (AMT) of cultivars SA281, 296B and Tx430. The optimal conditions were the use of Agrobacterium strain LBA4404 at an inoculum density of 0.5 OD600nm, heat shock at 43oC for 3 min, use of the surfactant Pluronic F-68 (0.02% w/v) in the inoculation media with a pH of 5.2 and a 3 day co-cultivation period in dark at 22oC. Using these parameters, high frequencies of transient GFP expression was observed in IEs precultured on callus initiation media for 1-7 days as well as in four weeks old IE- and IF-derived callus. Cultivar SA281 appeared very sensitive to Agrobacterium since all tissue turned necrotic within two weeks post-exposure. For cultivar 296B, GFP expression was observed up to 20 days post co-cultivation but no stably transformed plants were regenerated. Using cultivar Tx430, GFP was expressed for up to 50 days post co-cultivation. Although no stably transformed plants of this cultivar were regenerated, this was most likely due to the use of unsuitable regeneration media. Parameters were optimised for transformation by particle bombardment (PB) of cultivars SA281, 296B and Tx430. The optimal conditions were use of 3-7 days old IEs and 4 weeks old IF callus, 4 hour pre- and post-bombardment osmoticum treatment, use of 0.6 µm gold microparticles, helium pressure of 1500 kPa and target distance of 15 cm. Using these parameters for PB, transient GFP expression was observed for up to 14, 30 and 50 days for cultivars SA281, 296B and Tx430, respectively. Further, the use of PB resulted in less tissue necrosis compared to AMT for the respective cultivars. Despite the presence of transient GFP expression, no stably transformed plants were regenerated. The establishment of regenerable ECLs and the optimization of AMT and PB parameters in this study provides a platform for future efforts to develop an efficient transformation protocol for sorghum. The development of GM sorghum will be an important step towards improving its agronomic properties as well as its exploitation for biofuel production.
Resumo:
Utilizing a mono-specific antiserum produced in rabbits to hog kidney aromatic L-amino acid decarboxylase (AADC), the enzyme was localized in rat kidney by immunoperoxidase staining. AADC was located predominantly in the proximal convoluted tubules; there was also weak staining in the distal convoluted tubules and collecting ducts. An increase in dietary potassium or sodium intake produced no change in density or distribution of AADC staining in kidney. An assay of AADC enzyme activity showed no difference in cortex or medulla with chronic potassium loading. A change in distribution or activity of renal AADC does not explain the postulated dopaminergic modulation of renal function that occurs with potassium or sodium loading.