134 resultados para immagini Fourier convoluzione deconvoluzione Kernel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnostics of rotating machinery has developed significantly in the last decades, and industrial applications are spreading in different sectors. Most applications are characterized by varying velocities of the shaft and in many cases transients are the most critical to monitor. In these variable speed conditions, fault symptoms are clearer in the angular/order domains than in the common time/frequency ones. In the past, this issue was often solved by synchronously sampling data by means of phase locked circuits governing the acquisition; however, thanks to the spread of cheap and powerful microprocessors, this procedure is nowadays rarer; sampling is usually performed at constant time intervals, and the conversion to the order domain is made by means of digital signal processing techniques. In the last decades different algorithms have been proposed for the extraction of an order spectrum from a signal sampled asynchronously with respect to the shaft rotational velocity; many of them (the so called computed order tracking family) use interpolation techniques to resample the signal at constant angular increments, followed by a common discrete Fourier transform to shift from the angular domain to the order domain. A less exploited family of techniques shifts directly from the time domain to the order spectrum, by means of modified Fourier transforms. This paper proposes a new transform, named velocity synchronous discrete Fourier transform, which takes advantage of the instantaneous velocity to improve the quality of its result, reaching performances that can challenge the computed order tracking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical requirement for safe autonomous navigation of a planetary rover is the ability to accurately estimate the traversability of the terrain. This work considers the problem of predicting the attitude and configuration angles of the platform from terrain representations that are often incomplete due to occlusions and sensor limitations. Using Gaussian Processes (GP) and exteroceptive data as training input, we can provide a continuous and complete representation of terrain traversability, with uncertainty in the output estimates. In this paper, we propose a novel method that focuses on exploiting the explicit correlation in vehicle attitude and configuration during operation by learning a kernel function from vehicle experience to perform GP regression. We provide an extensive experimental validation of the proposed method on a planetary rover. We show significant improvement in the accuracy of our estimation compared with results obtained using standard kernels (Squared Exponential and Neural Network), and compared to traversability estimation made over terrain models built using state-of-the-art GP techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In presented method combination of Fourier and Time domain detection enables to broaden the effective bandwidth for time dependent Doppler Signal that allows for using higher-order Bessel functions to calculate unambiguously the vibration amplitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gaining invariance to camera and illumination variations has been a well investigated topic in Active Appearance Model (AAM) fitting literature. The major problem lies in the inability of the appearance parameters of the AAM to generalize to unseen conditions. An attractive approach for gaining invariance is to fit an AAM to a multiple filter response (e.g. Gabor) representation of the input image. Naively applying this concept with a traditional AAM is computationally prohibitive, especially as the number of filter responses increase. In this paper, we present a computationally efficient AAM fitting algorithm based on the Lucas-Kanade (LK) algorithm posed in the Fourier domain that affords invariance to both expression and illumination. We refer to this as a Fourier AAM (FAAM), and show that this method gives substantial improvement in person specific AAM fitting performance over traditional AAM fitting methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural characteristics of raw coal and hydrogen peroxide (H2O2)-oxidized coals were investigated using scanning electron microscopy, X-ray diffraction (XRD), Raman spectra, and Fourier transform infrared (FT-IR) spectroscopy. The results indicate that the derivative coals oxidized by H2O2 are improved noticeably in aromaticity and show an increase first and then a decrease up to the highest aromaticity at 24 h. The stacking layer number of crystalline carbon decreases and the aspect ratio (width versus stacking height) increases with an increase in oxidation time. The content of crystalline carbon shows the same change tendency as the aromaticity measured by XRD. The hydroxyl bands of oxidized coals become much stronger due to an increase in soluble fatty acids and alcohols as a result of the oxidation of the aromatic and aliphatic C‐H bonds. In addition, the derivative coals display a decrease first and then an increase in the intensity of aliphatic C‐H bond and present a diametrically opposite tendency in the aromatic C‐H bonds with an increase in oxidation time. There is good agreement with the changes of aromaticity and crystalline carbon content as measured by XRD and Raman spectra. The particle size of oxidized coals (<200 nm in width) shows a significant decrease compared with that of raw coal (1 μm). This study reveals that the optimal oxidation time is ∼24 h for improving the aromaticity and crystalline carbon content of H2O2-oxidized coals. This process can help us obtain superfine crystalline carbon materials similar to graphite in structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction-diffusion equations described by the fractional Laplacian in bounded rectangular domains ofRn. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we aim at predicting protein structural classes for low-homology data sets based on predicted secondary structures. We propose a new and simple kernel method, named as SSEAKSVM, to predict protein structural classes. The secondary structures of all protein sequences are obtained by using the tool PSIPRED and then a linear kernel on the basis of secondary structure element alignment scores is constructed for training a support vector machine classifier without parameter adjusting. Our method SSEAKSVM was evaluated on two low-homology datasets 25PDB and 1189 with sequence homology being 25% and 40%, respectively. The jackknife test is used to test and compare our method with other existing methods. The overall accuracies on these two data sets are 86.3% and 84.5%, respectively, which are higher than those obtained by other existing methods. Especially, our method achieves higher accuracies (88.1% and 88.5%) for differentiating the α + β class and the α/β class compared to other methods. This suggests that our method is valuable to predict protein structural classes particularly for low-homology protein sequences. The source code of the method in this paper can be downloaded at http://math.xtu.edu.cn/myphp/math/research/source/SSEAK_source_code.rar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates several competing procedures for computing the prices of vanilla European options, such as puts, calls and binaries, in which the underlying model has a characteristic function that is known in semi-closed form. The algorithms investigated here are the half-range Fourier cosine series, the half-range Fourier sine series and the full-range Fourier series. Their performance is assessed in simulation experiments in which an analytical solution is available and also for a simple affine model of stochastic volatility in which there is no closed-form solution. The results suggest that the half-range sine series approximation is the least effective of the three proposed algorithms. It is rather more difficult to distinguish between the performance of the halfrange cosine series and the full-range Fourier series. However there are two clear differences. First, when the interval over which the density is approximated is relatively large, the full-range Fourier series is at least as good as the half-range Fourier cosine series, and outperforms the latter in pricing out-of-the-money call options, in particular with maturities of three months or less. Second, the computational time required by the half-range Fourier cosine series is uniformly longer than that required by the full-range Fourier series for an interval of fixed length. Taken together,these two conclusions make a case for pricing options using a full-range range Fourier series as opposed to a half-range Fourier cosine series if a large number of options are to be priced in as short a time as possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Images from cell biology experiments often indicate the presence of cell clustering, which can provide insight into the mechanisms driving the collective cell behaviour. Pair-correlation functions provide quantitative information about the presence, or absence, of clustering in a spatial distribution of cells. This is because the pair-correlation function describes the ratio of the abundance of pairs of cells, separated by a particular distance, relative to a randomly distributed reference population. Pair-correlation functions are often presented as a kernel density estimate where the frequency of pairs of objects are grouped using a particular bandwidth (or bin width), Δ>0. The choice of bandwidth has a dramatic impact: choosing Δ too large produces a pair-correlation function that contains insufficient information, whereas choosing Δ too small produces a pair-correlation signal dominated by fluctuations. Presently, there is little guidance available regarding how to make an objective choice of Δ. We present a new technique to choose Δ by analysing the power spectrum of the discrete Fourier transform of the pair-correlation function. Using synthetic simulation data, we confirm that our approach allows us to objectively choose Δ such that the appropriately binned pair-correlation function captures known features in uniform and clustered synthetic images. We also apply our technique to images from two different cell biology assays. The first assay corresponds to an approximately uniform distribution of cells, while the second assay involves a time series of images of a cell population which forms aggregates over time. The appropriately binned pair-correlation function allows us to make quantitative inferences about the average aggregate size, as well as quantifying how the average aggregate size changes with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying unusual or anomalous patterns in an underlying dataset is an important but challenging task in many applications. The focus of the unsupervised anomaly detection literature has mostly been on vectorised data. However, many applications are more naturally described using higher-order tensor representations. Approaches that vectorise tensorial data can destroy the structural information encoded in the high-dimensional space, and lead to the problem of the curse of dimensionality. In this paper we present the first unsupervised tensorial anomaly detection method, along with a randomised version of our method. Our anomaly detection method, the One-class Support Tensor Machine (1STM), is a generalisation of conventional one-class Support Vector Machines to higher-order spaces. 1STM preserves the multiway structure of tensor data, while achieving significant improvement in accuracy and efficiency over conventional vectorised methods. We then leverage the theory of nonlinear random projections to propose the Randomised 1STM (R1STM). Our empirical analysis on several real and synthetic datasets shows that our R1STM algorithm delivers comparable or better accuracy to a state-of-the-art deep learning method and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of the hydroxyl units of synthetic goethite and its dehydroxylated product hematite was characterized using a combination of Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) during the thermal transformation over a temperature range of 180-270 degrees C. Hematite was detected at temperatures above 200 degrees C by XRD while goethite was not observed above 230 degrees C. Five intense OH vibrations at 3212-3194, 1687-1674, 1643-1640, 888-884 and 800-798 cm(-1), and a H2O vibration at 3450-3445 cm(-1) were observed for goethite. The intensity of hydroxyl stretching and bending vibrations decreased with the extent of dehydroxylation of goethite. Infrared absorption bands clearly show the phase transformation between goethite and hematite: in particular. the migration of excess hydroxyl units from goethite to hematite. Two bands at 536-533 and 454-452 cm(-1) are the low wavenumber vibrations of Fe-O in the hematite structure. Band component analysis data of FTIR spectra support the fact that the hydroxyl units mainly affect the a plane in goethite and the equivalent c plane in hematite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal evolution process of RuO2–Ta2O5/Ti coatings with varying noble metal content has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry. The gel-like films prepared from alcoholic solutions of the precursor salts (RuCl3·3H2O, TaCl5) onto titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600 °C. The evolution of the mixed oxide coatings was followed by the mass spectrometric ion intensity curves. The cracking of retained solvent and the combustion of organic surface species formed were also followed by the mass spectrometric curves. The formation of carbonyl- and carboxylate-type surface species connected to the noble metal was identified by Fourier transform infrared emission spectroscopy. These secondary processes–catalyzed by the noble metal–may play an important role in the development of surface morphology and electrochemical properties. The evolution of the two oxide phases does not take place independently, and the effect of the noble metal as a combustion catalyst was proved.