62 resultados para genomic in situ hybridization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelin-1 (ET-1) is a potent vasoactive peptide and a hypoxia-inducible angiogenic growth factor associated with the development and growth of solid tumours. This study evaluated the expression of big endothelin-1 (big ET-1), a stable precursor of ET-1, and ET-1 in non-small cell lung cancer (NSCLC). Big ET-1 expression was evaluated in paraffin-embedded tissue sections from 10 NSCLC tumours using immunohistochemistry and in situ hybridisation. The production of big ET-1 and ET-1 was studied in six established NSCLC cell lines. The plasma concentrations of big ET-1 were measured in 30 patients with proven NSCLC prior to chemotherapy by means of a sandwich enzyme-linked immunoassay and compared to levels in 20 normal controls. Big ET-1 immunostaining was detected in the cancer cells of all tumours studied. Using in situ hybridisation, tumour cell big ET-1 mRNA expression was demonstrated in all samples. All six NSCLC cell lines expressed ET-1, with big ET-1 being detected in three. The median big ET-1 plasma level in patients with NSCLC was 5.4 pg/mL (range 0-22.7 pg/mL) and was significantly elevated compared to median big ET-1 plasma levels in controls, 2.1 pg/mL (1.2-13.4 pg/mL) (p=0.0001). Furthermore, patients with plasma big ET-1 levels above the normal range (upper tertile) had a worse outcome (p=0.01). In conclusion, big ET-1/ET-1 is expressed by resected NSCLC specimens and tumour cell lines. Plasma big ET-1 levels are elevated in NSCLC patients compared to controls with levels >7.8 pg/mL being associated with a worse outcome. The development of selective ET-1 antagonists such as Atrasentan indicates that ET-1 may be a therapeutic target in NSCLC. © 2004 Wichtig Editore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HER2 is an erbB/HER type I tyrosine kinase receptor that is frequently over-expressed in malignant epithelial tumours. Herceptin, a humanised mouse monoclonal antibody to HER2, is proven therapeutically in the management of metastatic breast cancer, significantly prolonging survival when combined with cytotoxic chemotherapeutic agents. Immunohistochemical studies suggest that non-small-cell lung cancer (NSCLC) tumours may over-express HER2. Our aim was to evaluate HER2 gene amplification and semi-quantitative immuno-expression in NSCLC. A total of 344 NSCLC cases were immunostained for HER2 expression in 2 centres using the HercepTest. Fluorescence in situ hybridisation (FISH) analysis for HER2 gene amplification was performed on most positive cases and a subset of negative cases. Fifteen cases (4.3%) demonstrated 2+ or 3+ membranous HER2 immuno-expression. There was no correlation between immuno-expression and tumour histology or grade. Tumours from higher-stage disease were more often HercepTest-positive (p < 0.001). All 4 HercepTest 3 + cases demonstrated gene amplification. One of the 5 2+ cases tested for gene amplification showed areas of borderline amplification and areas of polyploidy. None of the 19 HercepTest-negative cases demonstrated gene amplification or polyploidy (p < 0.001). Gene amplification was demonstrated in all HercepTest 3+ scoring NSCLC cases. Unlike breast cancer, gene amplification and HER2 protein over-expression assessed by the HercepTest appeared to be uncommon in NSCLC. Herceptin may therefore target only a small proportion of NSCLC tumours and be of limited clinical value in this disease, particularly in the adjuvant setting. © 2001 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent advances in the understanding of the pathogenesis of ovarian cancer have been helpful in addressing issues in diagnosis, prognosis and management. The study of ovarian tumours by novel techniques such as immunohistochemistry, fluorescent in situ hybridisation, comparative genomic hybridisation, polymerase chain reaction and new tumour markers have aided the evaluation and application of new concepts into clinical practice. The correlation of novel surrogate tumour specific features with response to treatment and outcome in patients has defined prognostic factors which may allow the future design of tailored therapy based on a molecular profile of the tumour. These have also been used to design new approaches to therapy such as antibody targeting and gene therapy. The delineation of roles of c-erbB2, c-fms and other novel receptor kinases in the pathogenesis of ovarian cancer has led initially to the development of anti-c-erbB2 monoclonal antibody therapy. The discovery of BRCA1 and BRCA2 genes will have an impact in the diagnosis and the prevention of familial ovarian cancer. The important role played by recessive genes such as p53 in cancer has raised the possibility of restoration of gene function by gene therapy. Although the pathological diagnosis of ovarian cancer is still confirmed principally on morphological features, addition of newer investigations will increasingly be useful in addressing difficult diagnostic problems. The increasingly rapid pace of discovery of genes important in disease, makes it imperative that the evaluation of their contribution in the pathogenesis of ovarian cancer is undertaken swiftly, thus improving the overall management of patients and their outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomass tar restricts the wide application and development of biomass gasification technology. In the present paper, palygorskite, a natural magnesium-containing clay mineral, was investigated for catalytic pyrolysis of rape straw in situ and compared with the dolomite researched widely. The two types of natural minerals were characterized with XRD and BET. The results showed that combustible gas derived from the pyrolysis increased with an increase in gasification temperature. The Hconversion and Cconversion increased to 44.7% and 31% for the addition of palygorskite and increased to 41.3% and 31.3% for the addition of dolomite at the gasification temperature of 800 °C, compared with 15.1% and 5.6% without addition of the two types of material. It indicated that more biomass was converted into combustible gases implying the decrease in biomass tar under the function of palygorskite or dolomite and palygorskite had a slightly better efficiency than that of dolomite in the experimental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The vasoconstricting peptide endothelin-1 (ET-1) has been associated with atherosclerotic cardiovascular disease, vascular smooth muscle cell (VSMC) growth stimulation, and intimal thickening. ET-1 binds 2 receptor subtypes, endothelin A and B, and the ETA receptor mediates vasoconstriction and VSMC growth. This study aims to quantitatively assess arterial remodeling variables and compare them with changes in ET-1, ETA, and ETB expression in the internal mammary artery (IMA). METHODS AND RESULTS: Specimens from 55 coronary artery disease (CAD) patients (45 men, 10 women; mean age 65 years) and 14 control IMA specimens (from 7 men and 7 women; mean age 45 years) were collected. IMA cross sections were assessed by histochemical and immunohistochemical staining methods to quantify the levels of medionecrosis, fibrosis, VSMC growth, ET-1, ETA, ETB, and macrophage infiltration. The percentage area of medionecrosis in the patients was almost double that in the controls (31.85+/-14.52% versus 17.10+/-9.96%, P=0.0006). Total and type 1 collagen was significantly increased compared with controls (65.8+/-18.3% versus 33.7+/-13.7%, P=0.07, and 14.2+/-10.0% versus 4.8+/-2.8%, P=0.01, respectively). Despite ACE and/or statin therapy, ET-1 expression and cell cycling were significantly elevated in the patient IMAs relative to the controls (46.27+/-18.46 versus 8.56+/-8.42, P=0.0001, and 37.29+/-12.88 versus 11.06+/-8.18, P=0.0001, respectively). ETA and ETB staining was elevated in the patient vessels (46.88+/-11.52% versus 18.58+/-7.65%, P=0.0001, and 42.98+/-7.08% versus 34.73+/-5.20%, P=0.0067, respectively). A mild presence of macrophages was noted in all sections. CONCLUSIONS: Elevated distribution of collagen indicative of fibrosis coupled with increased cell cycling and high levels of ET-1 and ETA expression in the absence of chronic inflammation suggests altered IMA VSMC regulation is fundamental to the remodeling process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histological analysis of gill samples taken from individuals of Latris lineata reared in aquaculture in Tasmania, Australia, and those sampled from the wild revealed the presence of epitheliocystis-like basophilic inclusions. Subsequent morphological, in situ hybridization, and molecular analyses were performed to confirm the presence of this disease and discovered a Chlamydia-like organism associated with this condition, and the criteria set by Fredericks and Relman's postulates were used to establish disease causation. Three distinct 16S rRNA genotypes were sequenced from 16 fish, and phylogenetic analyses of the nearly full-length 16S rRNA sequences generated for this bacterial agent indicated that they were nearly identical novel members of the order Chlamydiales. This new taxon formed a well-supported clade with "Candidatus Parilichlamydia carangidicola" from the yellowtail kingfish (Seriola lalandi). On the basis of sequence divergence over the 16S rRNA region relative to all other members of the order Chlamydiales, a new genus and species are proposed here for the Chlamydia-like bacterium from L. lineata, i.e., "Candidatus Similichlamydia latridicola" gen. nov., sp. nov.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are critical for cardiovascular physiology. Cardiac cells express >100 nonchemosensory GPCRs, indicating that important physiological and potential therapeutic targets remain to be discovered. Moreover, there is a growing appreciation that members of the large, distinct taste and odorant GPCR families have specific functions in tissues beyond the oronasal cavity, including in the brain, gastrointestinal tract and respiratory system. To date, these chemosensory GPCRs have not been systematically studied in the heart. We performed RT-qPCR taste receptor screens in rodent and human heart tissues that revealed discrete subsets of type 2 taste receptors (TAS2/Tas2) as well as Tas1r1 and Tas1r3 (comprising the umami receptor) are expressed. These taste GPCRs are present in cultured cardiac myocytes and fibroblasts, and are enriched in myocytes, which we corroborated using in situ hybridization. Tas1r1 gene-targeted mice (Tas1r1Cre/Rosa26tdRFP) strikingly recapitulated these data. In vivo taste receptor expression levels were developmentally regulated in the postnatal period. Intriguingly, several Tas2rs were upregulated in cultured rat myocytes and in mouse heart in vivo following starvation. The discovery of taste GPCRs in the heart opens an exciting new field of cardiac research. We predict that these taste receptors may function as nutrient sensors in the heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the molecular structure of polymer antioxidants such as hindered amine light stabilisers (HALS) is central to their efficacy in retarding polymer degradation and therefore requires careful monitoring during their in-service lifetime. The HALS, bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (TIN123) and bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate (TIN292), were formulated in different polymer systems and then exposed to various curing and ageing treatments to simulate in-service use. Samples of these coatings were then analysed directly using liquid extraction surface analysis (LESA) coupled with a triple quadrupole mass spectrometer. Analysis of TIN123 formulated in a cross-linked polyester revealed that the polymer matrix protected TIN123 from undergoing extensive thermal degradation that would normally occur at 292 degrees C, specifically, changes at the 1- and 4-positions of the piperidine groups. The effect of thermal versus photo-oxidative degradation was also compared for TIN292 formulated in polyacrylate films by monitoring the in situ conversion of N-CH3 substituted piperidines to N-H. The analysis confirmed that UV light was required for the conversion of N-CH3 moieties to N-H - a major pathway in the antioxidant protection of polymers - whereas this conversion was not observed with thermal degradation. The use of tandem mass spectrometric techniques, including precursor-ion scanning, is shown to be highly sensitive and specific for detecting molecular-level changes in HALS compounds and, when coupled with LESA, able to monitor these changes in situ with speed and reproducibility. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of the Sengstaken–Blakemore tube as a life-saving treatment for bleeding oesophageal varices is slowly becoming the least preferred method possibly due to the potential complications associated with its placement. Nursing practice pertaining to the care of this patient group appears ad hoc and reliant on local knowledge and experience as opposed to recognised evidence of best practice. Therefore, this paper focuses on the application of Lewin's transitional change theory used to introduce a change in nursing practice with the application of a guideline to enhance the care of patients with a Sengstaken–Blakemore tube in situ within a general intensive care unit. This method identified some of the complexities surrounding the change process including the driving and restraining forces that must be harnessed and minimised in order for the adoption of change to be successful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the lower strength of pure copper (Cu), ceramic particulate or whisker reinforced Cu matrix composites have attracted wide interest in recent years [1–3]. These materials exhibit a combination of excellent thermal and electrical conductivities, high strength retention at elevated temperatures, and high microstructural stability [3]. The potential applications include various electrodes, electrical switches, and X-ray tube components [4].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Hybrid” hydrogen storage, where hydrogen is stored in both the solid material and as a high pressure gas in the void volume of the tank can improve overall system efficiency by up to 50% compared to either compressed hydrogen or solid materials alone. Thermodynamically, high equilibrium hydrogen pressures in metal–hydrogen systems correspond to low enthalpies of hydrogen absorption–desorption. This decreases the calorimetric effects of the hydride formation–decomposition processes which can assist in achieving high rates of heat exchange during hydrogen loading—removing the bottleneck in achieving low charging times and improving overall hydrogen storage efficiency of large hydrogen stores. Two systems with hydrogenation enthalpies close to −20 kJ/mol H2 were studied to investigate the hydrogenation mechanism and kinetics: CeNi5–D2 and ZrFe2−xAlx (x = 0.02; 0.04; 0.20)–D2. The structure of the intermetallics and their hydrides were studied by in situ neutron powder diffraction at pressures up to 1000 bar and complementary X-ray diffraction. The deuteration of the hexagonal CeNi5 intermetallic resulted in CeNi5D6.3 with a volume expansion of 30.1%. Deuterium absorption filled three different types of interstices, Ce2Ni2 and Ni4 tetrahedra, and Ce2Ni3 half-octahedra and was accompanied by a valence change for Ce. Significant hysteresis was observed between deuterium absorption and desorption which profoundly decreased on a second absorption cycle. For the Al-modified Laves-type C15 ZrFe2−xAlx intermetallics, deuteration showed very fast kinetics of H/D exchange and resulted in a volume increase of the FCC unit cells of 23.5% for ZrFe1.98Al0.02D2.9(1). Deuterium content, hysteresis of H/D uptake and release, unit cell expansion and stability of the hydrides systematically change with the amount of Al content. In the deuteride D atoms exclusively occupy the Zr2(Fe,Al)2 tetrahedra. Observed interatomic distances are Zr–D = 1.98–2.11; (Fe, Al)–D = 1.70–1.75A˚ . Hydrogenation slightly increases the magnetic moment of the Fe atoms in ZrFe1.98Al0.02 and ZrFe1.96Al0.04 from 1.9 �B at room temperature for the alloy to 2.2 �B for its deuteride.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was focused on studies of the metal hydride materials having a potential in building hydrogen storage systems with high gravimetric and volumetric efficiencies of H storage and formed / decomposed with high rates of hydrogen exchange. In situ diffraction studies of the metal-hydrogen systems were explored as a valuable tool in probing both the mechanism of the phase-structural transformations and their kinetics. Two complementary techniques, namely Neutron Powder Diffraction (NPD) and Synchrotron X-ray diffraction (SR XRD) were utilised. High pressure in situ NPD studies were performed at D2 pressures reaching 1000 bar at the D1B diffractometer accommodated at Institute Laue Langevin, Grenoble. The data of the time resolved in situ SR XRD were collected at the Swiss Norwegian Beam Lines, ESRF, Grenoble in the pressure range up to 50 bar H2 at temperatures 20-400°C. The systems studied by NPD at high pressures included deuterated Al-modified Laves-type C15 ZrFe2-xAlx intermetallics with x = 0.02; 0.04 and 0.20 and the CeNi5-D2 system. D content, hysteresis of H uptake and release, unit cell expansion and stability of the hydrides systematically change with Al content. Deuteration exhibited a very fast kinetics; it resulted in increase of the unit cells volumes reaching 23.5 % for ZrFe1.98Al0.02D2.9(1) and associated with exclusive occupancy of the Zr2(Fe,Al)2 tetrahedra. For CeNi5 deuteration yielded a hexahydride CeNi5D6.2 (20°C, 776 bar D2) and was accompanied by a nearly isotropic volume expansion reaching 30.1% (∆a/a=10.0%; ∆c/c=7.5%). Deuterium atoms fill three different interstitial sites including Ce2Ni2, Ce2Ni3 and Ni4. Significant hysteresis was observed on the first absorption-desorption cycle. This hysteresis decreased on the absorption-desorption cycling. A different approach to the development of H storage systems is based on the hydrides of light elements, first of all the Mg-based ones. These systems were studied by SR XRD. Reactive ball milling in hydrogen (HRBM) allowed synthesis of the nanostructured Mg-based hydrides. The experimental parameters (PH2, T, energy of milling, ball / sample ratio and balls size), significantly influence rate of hydrogenation. The studies confirmed (a) a completeness of hydrogenation of Mg into MgH2; (b) indicated a partial transformation of the originally formed -MgH2 into a metastable -MgH2 (a ratio / was 3/1); (c) yielded the crystallite size for the main hydrogenation product, -MgH2, as close to 10 nm. Influence of the additives to Mg on the structure and hydrogen absorption/desorption properties and cycle behaviour of the composites was established and will be discussed in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection and characterisation of structural modifications of a hindered amine light stabiliser (HALS) directly from a polyester-based coil coating have been achieved by desorption electrospray ionisation mass spectrometry (DESI-MS) for the first time. In situ detection is made possible by exposing the coating to an acetone vapour atmosphere prior to analysis. This is a gentle and non-destructive treatment that allows diffusion of analyte to the surface without promoting lateral migration. Using this approach a major structural modification of the HALS TINUVIN®123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) was discovered where one N-ether piperidine moiety (N-OC8H17) is converted to a secondary piperidine (N–H). With the use of 2-dimensional DESI-MS imaging the modification was observed to arise during high curing temperatures (ca. 260 °C) and under simulated physiological conditions (80 °C, full solar spectrum). It is proposed that the secondary piperidine derivative is a result of a highly reactive aminyl radical intermediate produced by N–O homolytic bond cleavage. The nature of the bond cleavage is also suggested by ESR spin-trapping experiments employing α-phenyl-N-tert-butyl nitrone (PBN) in toluene at 80 °C. The presence of a secondary piperidine derivative in situ and the implication of N–OR competing with NO–R bond cleavage suggest an alternative pathway for generation of the nitroxyl radical—an essential requirement in anti-oxidant activity that has not previously been described for the N-ether sub-class of HALS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a novel technology for the rapid healing of large osseous and chondral defects, based upon the genetic modification of autologous skeletal muscle and fat grafts. These tissues were selected because they not only possess mesenchymal progenitor cells and scaffolding properties, but also can be biopsied, genetically modified and returned to the patient in a single operative session. First generation adenovirus vector carrying cDNA encoding human bone morphogenetic protein-2 (Ad.BMP-2) was used for gene transfer to biopsies of muscle and fat. To assess bone healing, the genetically modified (“gene activated”) tissues were implanted into 5mm-long critical size, mid-diaphyseal, stabilized defects in the femora of Fischer rats. Unlike control defects, those receiving gene-activated muscle underwent rapid healing, with evidence of radiologic bridging as early as 10 days after implantation and restoration of full mechanical strength by 8 weeks. Histologic analysis suggests that the grafts rapidly differentiated into cartilage, followed by efficient endochondral ossification. Fluorescence in situ hybridization detection of Y-chromosomes following the transfer of male donor muscle into female rats demonstrated that at least some of the osteoblasts of the healed bone were derived from donor muscle. Gene activated fat also healed critical sized defects, but less quickly than muscle and with more variability. Anti-adenovirus antibodies were not detected. Pilot studies in a rabbit osteochondral defect model demonstrated the promise of this technology for healing cartilage defects. Further development of these methods should provide ways to heal bone and cartilage more expeditiously, and at lower cost, than is presently possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.