351 resultados para genetic trend
Resumo:
Over the years, approaches to obesity prevention and treatment have gone from focusing on genetic and other biological factors to exploring a diversity of diets and individual behavior modification interventions anchored primarily in the power of the mind, to the recent shift focusing on societal interventions to design ";temptation-proof"; physical, social, and economic environments. In spite of repeated calls to action, including those of the World Health Organization (WHO), the pandemic continues to progress. WHO recently projected that if the current lifestyle trend in young and adult populations around the world persist, by 2012 in countries like the USA, health care costs may amount to as much as 17.7% of the GDP. Most importantly, in large part due to the problems of obesity, those children may be the first generation ever to have a shorter life expectancy than that of their parents. This work presents the most current research and proposals for addressing the pandemic. Past studies have focused primarly on either genetic or behavioral causes for obesity, however today's research indicates that a strongly integrated program is the best prospect for success in overcoming obesity. Furthermore, focus on the role of society in establishing an affordable, accessible and sustainable program for implementing these lifestyle changes is vital, particularly for those in economically challenged situations, who are ultimately at the highest risk for obesity. Using studies from both neuroscience and behavioral science to present a comprehensive overview of the challenges and possible solutions, The brain-to-society approach to obesity prevention focuses on what is needed in order to sustain a healthy, pleasurable and affordable lifestyle.
Resumo:
Composite web services comprise several component web services. When a composite web service is executed centrally, a single web service engine is responsible for coordinating the execution of the components, which may create a bottleneck and degrade the overall throughput of the composite service when there are a large number of service requests. Potentially this problem can be handled by decentralizing execution of the composite web service, but this raises the issue of how to partition a composite service into groups of component services such that each group can be orchestrated by its own execution engine while ensuring acceptable overall throughput of the composite service. Here we present a novel penalty-based genetic algorithm to solve the composite web service partitioning problem. Empirical results show that our new algorithm outperforms existing heuristic-based solutions.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
Balimau Putih [an Indonesian cultivar tolerant to rice tungro bacilliform virus (RTBV)] was crossed with IR64 (RTBV, susceptible variety) to produce the three filial generations F1, F2 and F3. Agroinoculation was used to introduce RTBV into the test plants. RTBV tolerance was based on the RTBV level in plants by analysis of coat protein using enzyme-linked immunosorbent assay. The level of RTBV in cv. Balimau Putih was significantly lower than that of IR64 and the susceptible control, Taichung Native 1. Mean RTBV levels of the F1, F2 and F3 populations were comparable with one another and with the average of the parents. Results indicate that there was no dominance and an additive gene action may control the expression of tolerance to RTBV. Tolerance based on the level of RTBV coat protein was highly heritable (0.67) as estimated using the mean values of F3 lines, suggesting that selection for tolerance to RTBV can be performed in the early selfing generations using the technique employed in this study. The RTBV level had a negative correlation with plant height, but positive relationship with disease index value
Resumo:
This paper describes the optimization of conductor size and the voltage regulator location & magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.
Resumo:
The railway service is now the major transportation means in most of the countries around the world. With the increasing population and expanding commercial and industrial activities, a high quality of railway service is the most desirable. Train service usually varies with the population activities throughout a day and train coordination and service regulation are then expected to meet the daily passengers' demand. Dwell time control at stations and fixed coasting point in an inter-station run are the current practices to regulate train service in most metro railway systems. However, a flexible and efficient train control and operation is not always possible. To minimize energy consumption of train operation and make certain compromises on the train schedule, coast control is an economical approach to balance run-time and energy consumption in railway operation if time is not an important issue, particularly at off-peak hours. The capability to identify the starting point for coasting according to the current traffic conditions provides the necessary flexibility for train operation. This paper presents an application of genetic algorithms (GA) to search for the appropriate coasting point(s) and investigates the possible improvement on fitness of genes. Single and multiple coasting point control with simple GA are developed to attain the solutions and their corresponding train movement is examined. Further, a hierarchical genetic algorithm (HGA) is introduced here to identify the number of coasting points required according to the traffic conditions, and Minimum-Allele-Reserve-Keeper (MARK) is adopted as a genetic operator to achieve fitter solutions.
Resumo:
In general, simple and traditional methods are applied to resolve traffic conflicts at railway junctions. They are, however, either inefficient or computationally demanding. A simple genetic algorithm is presented to enable a search for a near optimal resolution to be carried out while meeting the constraints on generation evolution and minimising the search time.