246 resultados para fragmentation function
Resumo:
Habitat models are widely used in ecology, however there are relatively few studies of rare species, primarily because of a paucity of survey records and lack of robust means of assessing accuracy of modelled spatial predictions. We investigated the potential of compiled ecological data in developing habitat models for Macadamia integrifolia, a vulnerable mid-stratum tree endemic to lowland subtropical rainforests of southeast Queensland, Australia. We compared performance of two binomial models—Classification and Regression Trees (CART) and Generalised Additive Models (GAM)—with Maximum Entropy (MAXENT) models developed from (i) presence records and available absence data and (ii) developed using presence records and background data. The GAM model was the best performer across the range of evaluation measures employed, however all models were assessed as potentially useful for informing in situ conservation of M. integrifolia, A significant loss in the amount of M. integrifolia habitat has occurred (p < 0.05), with only 37% of former habitat (pre-clearing) remaining in 2003. Remnant patches are significantly smaller, have larger edge-to-area ratios and are more isolated from each other compared to pre-clearing configurations (p < 0.05). Whilst the network of suitable habitat patches is still largely intact, there are numerous smaller patches that are more isolated in the contemporary landscape compared with their connectedness before clearing. These results suggest that in situ conservation of M. integrifolia may be best achieved through a landscape approach that considers the relative contribution of small remnant habitat fragments to the species as a whole, as facilitating connectivity among the entire network of habitat patches.
Resumo:
This work is a digital version of a dissertation that was first submitted in partial fulfillment of the Degree of Doctor of Philosophy at the Queensland University of Technology (QUT) in March 1994. The work was concerned with problems of self-organisation and organisation ranging from local to global levels of hierarchy. It considers organisations as living entities from local to global things that a living entity – more particularly, an individual, a body corporate or a body politic - must know and do to maintain an existence – that is to remain viable – or to be sustainable. The term ‘land management’ as used in 1994 was later subsumed into a more general concept of ‘natural resource management’ and then merged with ideas about sustainable socioeconomic and sustainable ecological development. The cybernetic approach contains many cognitive elements of human observation, language and learning that combine into production processes. The approach tends to highlight instances where systems (or organisations) can fail because they have very little chance of succeeding. Thus there are logical necessities as well as technical possibilities in designing, constructing, operating and maintaining production systems that function reliably over extended periods. Chapter numbers and titles to the original thesis are as follows: 1. Land management as a problem of coping with complexity 2. Background theory in systems theory and cybernetic principles 3. Operationalisation of cybernetic principles in Beer’s Viable System Model 4. Issues in the design of viable cadastral surveying and mapping organisation 5. An analysis of the tendency for fragmentation in surveying and mapping organisation 6. Perambulating the boundaries of Sydney – a problem of social control under poor standards of literacy 7. Cybernetic principles in the process of legislation 8. Closer settlement policy and viability in agricultural production 9. Rate of return in leasing Crown lands