183 resultados para fixed-point arithmetic
Resumo:
In this paper, a fixed-switching-frequency closed-loop modulation of a voltage-source inverter (VSI), upon the digital implementation of the modulation process, is analyzed and characterized. The sampling frequency of the digital processor is considered as an integer multiple of the modulation switching frequency. An expression for the determination of the modulation design parameter is developed for smooth modulation at a fixed switching frequency. The variation of the sampling frequency, switching frequency, and modulation index has been analyzed for the determination of the switching condition under closed loop. It is shown that the switching condition determined based on the continuous-time analysis of the closed-loop modulation will ensure smooth modulation upon the digital implementation of the modulation process. However, the stability properties need to be tested prior to digital implementation as they get deteriorated at smaller sampling frequencies. The closed-loop modulation index needs to be considered maximum while determining the design parameters for smooth modulation. In particular, a detailed analysis has been carried out by varying the control gain in the sliding-mode control of a two-level VSI. The proposed analysis of the closed-loop modulation of the VSI has been verified for the operation of a distribution static compensator. The theoretical results are validated experimentally on both single- and three-phase systems.
Resumo:
Crest-fixed steel claddings made of thin, high strength steel often suffer from local pull-through failures at their screw connections during high wind events such as storms and hurricanes. Adequate design provisions are not available for these cladding systems except for the expensive testing provisions. Since the local pull-through failures in the less ductile steel claddings are initiated by transverse splitting at the fastener holes, numerical studies have not been able to determine the pull-through failure loads. Numerical studies could be used if a reliable splitting criterion is available. Therefore a series of two-span cladding and small scale tests was conducted on a range of crest-fixed steel cladding systems under simulated wind uplift loads. The strains in the sheeting around the critical central support screw fastener holes were measured until the pull-through failure occurred. This paper presents the details of the experimental investigation and the results including a strain criterion for the local pull-through failures in crest-fixed steel claddings.
Resumo:
A common scenario in many pairing-based cryptographic protocols is that one argument in the pairing is fixed as a long term secret key or a constant parameter in the system. In these situations, the runtime of Miller's algorithm can be significantly reduced by storing precomputed values that depend on the fixed argument, prior to the input or existence of the second argument. In light of recent developments in pairing computation, we show that the computation of the Miller loop can be sped up by up to 37 if precomputation is employed, with our method being up to 19.5 faster than the previous precomputation techniques.
Resumo:
A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM- LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’ lower and upper bound solutions can be obtained using PIM-LS2.
Resumo:
The most costly operations encountered in pairing computations are those that take place in the full extension field Fpk . At high levels of security, the complexity of operations in Fpk dominates the complexity of the operations that occur in the lower degree subfields. Consequently, full extension field operations have the greatest effect on the runtime of Miller’s algorithm. Many recent optimizations in the literature have focussed on improving the overall operation count by presenting new explicit formulas that reduce the number of subfield operations encountered throughout an iteration of Miller’s algorithm. Unfortunately, almost all of these improvements tend to suffer for larger embedding degrees where the expensive extension field operations far outweigh the operations in the smaller subfields. In this paper, we propose a new way of carrying out Miller’s algorithm that involves new explicit formulas which reduce the number of full extension field operations that occur in an iteration of the Miller loop, resulting in significant speed ups in most practical situations of between 5 and 30 percent.
Resumo:
Speeding remains a significant contributing factor to road trauma internationally, despite increasingly sophisticated speed management strategies being adopted around the world. Increases in travel speed are associated with increases in crash risk and crash severity. As speed choice is a voluntary behaviour, driver perceptions are important to our understanding of speeding and, importantly, to designing effective behavioural countermeasures. The four studies conducted in this program of research represent a comprehensive approach to examining psychosocial influences on driving speeds in two countries that are at very different levels of road safety development: Australia and China. Akers’ social learning theory (SLT) was selected as the theoretical framework underpinning this research and guided the development of key research hypotheses. This theory was chosen because of its ability to encompass psychological, sociological, and criminological perspectives in understanding behaviour, each of which has relevance to speeding. A mixed-method design was used to explore the personal, social, and legal influences on speeding among car drivers in Queensland (Australia) and Beijing (China). Study 1 was a qualitative exploration, via focus group interviews, of speeding among 67 car drivers recruited from south east Queensland. Participants were assigned to groups based on their age and gender, and additionally, according to whether they self-identified as speeding excessively or rarely. This study aimed to elicit information about how drivers conceptualise speeding as well as the social and legal influences on driving speeds. The findings revealed a wide variety of reasons and circumstances that appear to be used as personal justifications for exceeding speed limits. Driver perceptions of speeding as personally and socially acceptable, as well as safe and necessary were common. Perceptions of an absence of danger associated with faster driving speeds were evident, particularly with respect to driving alone. An important distinction between the speed-based groups related to the attention given to the driving task. Rare speeders expressed strong beliefs about the need to be mindful of safety (self and others) while excessive speeders referred to the driving task as automatic, an absent-minded endeavour, and to speeding as a necessity in order to remain alert and reduce boredom. For many drivers in this study, compliance with speed limits was expressed as discretionary rather than mandatory. Social factors, such as peer and parental influence were widely discussed in Study 1 and perceptions of widespread community acceptance of speeding were noted. In some instances, the perception that ‘everybody speeds’ appeared to act as one rationale for the need to raise speed limits. Self-presentation, or wanting to project a positive image of self was noted, particularly with respect to concealing speeding infringements from others to protect one’s image as a trustworthy and safe driver. The influence of legal factors was also evident. Legal sanctions do not appear to influence all drivers to the same extent. For instance, fear of apprehension appeared to play a role in reducing speeding for many, although previous experiences of detection and legal sanctions seemed to have had limited influence on reducing speeding among some drivers. Disregard for sanctions (e.g., driving while suspended), fraudulent demerit point use, and other strategies to avoid detection and punishment were widely and openly discussed. In Study 2, 833 drivers were recruited from roadside service stations in metropolitan and regional locations in Queensland. A quantitative research strategy assessed the relative contribution of personal, social, and legal factors to recent and future self-reported speeding (i.e., frequency of speeding and intentions to speed in the future). Multivariate analyses examining a range of factors drawn from SLT revealed that factors including self-identity (i.e., identifying as someone who speeds), favourable definitions (attitudes) towards speeding, personal experiences of avoiding detection and punishment for speeding, and perceptions of family and friends as accepting of speeding were all significantly associated with greater self-reported speeding. Study 3 was an exploratory, qualitative investigation of psychosocial factors associated with speeding among 35 Chinese drivers who were recruited from the membership of a motoring organisation and a university in Beijing. Six focus groups were conducted to explore similar issues to those examined in Study 1. The findings of Study 3 revealed many similarities with respect to the themes that arose in Australia. For example, there were similarities regarding personal justifications for speeding, such as the perception that posted limits are unreasonably low, the belief that individual drivers are able to determine safe travel speeds according to personal comfort with driving fast, and the belief that drivers possess adequate skills to control a vehicle at high speed. Strategies to avoid detection and punishment were also noted, though they appeared more widespread in China and also appeared, in some cases, to involve the use of a third party, a topic that was not reported by Australian drivers. Additionally, higher perceived enforcement tolerance thresholds were discussed by Chinese participants. Overall, the findings indicated perceptions of a high degree of community acceptance of speeding and a perceived lack of risk associated with speeds that were well above posted speed limits. Study 4 extended the exploratory research phase in China with a quantitative investigation involving 299 car drivers recruited from car washes in Beijing. Results revealed a relatively inexperienced sample with less than 5 years driving experience, on average. One third of participants perceived that the certainty of penalties when apprehended was low and a similar proportion of Chinese participants reported having previously avoided legal penalties when apprehended for speeding. Approximately half of the sample reported that legal penalties for speeding were ‘minimally to not at all’ severe. Multivariate analyses revealed that past experiences of avoiding detection and punishment for speeding, as well as favourable attitudes towards speeding, and perceptions of strong community acceptance of speeding were most strongly associated with greater self-reported speeding in the Chinese sample. Overall, the results of this research make several important theoretical contributions to the road safety literature. Akers’ social learning theory was found to be robust across cultural contexts with respect to speeding; similar amounts of variance were explained in self-reported speeding in the quantitative studies conducted in Australia and China. Historically, SLT was devised as a theory of deviance and posits that deviance and conformity are learned in the same way, with the balance of influence stemming from the ways in which behaviour is rewarded and punished (Akers, 1998). This perspective suggests that those who speed and those who do not are influenced by the same mechanisms. The inclusion of drivers from both ends of the ‘speeding spectrum’ in Study 1 provided an opportunity to examine the wider utility of SLT across the full range of the behaviour. One may question the use of a theory of deviance to investigate speeding, a behaviour that could, arguably, be described as socially acceptable and prevalent. However, SLT seemed particularly relevant to investigating speeding because of its inclusion of association, imitation, and reinforcement variables which reflect the breadth of factors already found to be potentially influential on driving speeds. In addition, driving is a learned behaviour requiring observation, guidance, and practice. Thus, the reinforcement and imitation concepts are particularly relevant to this behaviour. Finally, current speed management practices are largely enforcement-based and rely on the principles of behavioural reinforcement captured within the reinforcement component of SLT. Thus, the application of SLT to a behaviour such as speeding offers promise in advancing our understanding of the factors that influence speeding, as well as extending our knowledge of the application of SLT. Moreover, SLT could act as a valuable theoretical framework with which to examine other illegal driving behaviours that may not necessarily be seen as deviant by the community (e.g., mobile phone use while driving). This research also made unique contributions to advancing our understanding of the key components and the overall structure of Akers’ social learning theory. The broader SLT literature is lacking in terms of a thorough structural understanding of the component parts of the theory. For instance, debate exists regarding the relevance of, and necessity for including broader social influences in the model as captured by differential association. In the current research, two alternative SLT models were specified and tested in order to better understand the nature and extent of the influence of differential association on behaviour. Importantly, the results indicated that differential association was able to make a unique contribution to explaining self-reported speeding, thereby negating the call to exclude it from the model. The results also demonstrated that imitation was a discrete theoretical concept that should also be retained in the model. The results suggest a need to further explore and specify mechanisms of social influence in the SLT model. In addition, a novel approach was used to operationalise SLT variables by including concepts drawn from contemporary social psychological and deterrence-based research to enhance and extend the way that SLT variables have traditionally been examined. Differential reinforcement was conceptualised according to behavioural reinforcement principles (i.e., positive and negative reinforcement and punishment) and incorporated concepts of affective beliefs, anticipated regret, and deterrence-related concepts. Although implicit in descriptions of SLT, little research has, to date, made use of the broad range of reinforcement principles to understand the factors that encourage or inhibit behaviour. This approach has particular significance to road user behaviours in general because of the deterrence-based nature of many road safety countermeasures. The concept of self-identity was also included in the model and was found to be consistent with the definitions component of SLT. A final theoretical contribution was the specification and testing of a full measurement model prior to model testing using structural equation modelling. This process is recommended in order to reduce measurement error by providing an examination of the psychometric properties of the data prior to full model testing. Despite calls for such work for a number of decades, the current work appears to be the only example of a full measurement model of SLT. There were also a number of important practical implications that emerged from this program of research. Firstly, perceptions regarding speed enforcement tolerance thresholds were highlighted as a salient influence on driving speeds in both countries. The issue of enforcement tolerance levels generated considerable discussion among drivers in both countries, with Australian drivers reporting lower perceived tolerance levels than Chinese drivers. It was clear that many drivers used the concept of an enforcement tolerance in determining their driving speed, primarily with the desire to drive faster than the posted speed limit, yet remaining within a speed range that would preclude apprehension by police. The quantitative results from Studies 2 and 4 added support to these qualitative findings. Together, the findings supported previous research and suggested that a travel speed may not be seen as illegal until that speed reaches a level over the prescribed enforcement tolerance threshold. In other words, the enforcement tolerance appears to act as a ‘de facto’ speed limit, replacing the posted limit in the minds of some drivers. The findings from the two studies conducted in China (Studies 2 and 4) further highlighted the link between perceived enforcement tolerances and a ‘de facto’ speed limit. Drivers openly discussed driving at speeds that were well above posted speed limits and some participants noted their preference for driving at speeds close to ‘50% above’ the posted limit. This preference appeared to be shaped by the perception that the same penalty would be imposed if apprehended, irrespective of what speed they travelling (at least up to 50% above the limit). Further research is required to determine whether the perceptions of Chinese drivers are mainly influenced by the Law of the People’s Republic of China or by operational practices. Together, the findings from both studies in China indicate that there may be scope to refine enforcement tolerance levels, as has happened in other jurisdictions internationally over time, in order to reduce speeding. Any attempts to do so would likely be assisted by the provision of information about the legitimacy and purpose of speed limits as well as risk factors associated with speeding because these issues were raised by Chinese participants in the qualitative research phase. Another important practical implication of this research for speed management in China is the way in which penalties are determined. Chinese drivers described perceptions of unfairness and a lack of transparency in the enforcement system because they were unsure of the penalty that they would receive if apprehended. Steps to enhance the perceived certainty and consistency of the system to promote a more equitable approach to detection and punishment would appear to be welcomed by the general driving public and would be more consistent with the intended theoretical (deterrence) basis that underpins the current speed enforcement approach. The use of mandatory, fixed penalties may assist in this regard. In many countries, speeding attracts penalties that are dependent on the severity of the offence. In China, there may be safety benefits gained from the introduction of a similar graduated scale of speeding penalties and fixed penalties might also help to address the issue of uncertainty about penalties and related perceptions of unfairness. Such advancements would be in keeping with the principles of best practice for speed management as identified by the World Health Organisation. Another practical implication relating to legal penalties, and applicable to both cultural contexts, relates to the issues of detection and punishment avoidance. These two concepts appeared to strongly influence speeding in the current samples. In Australia, detection avoidance strategies reported by participants generally involved activities that are not illegal (e.g., site learning and remaining watchful for police vehicles). The results from China were similar, although a greater range of strategies were reported. The most common strategy reported in both countries for avoiding detection when speeding was site learning, or familiarisation with speed camera locations. However, a range of illegal practices were also described by Chinese drivers (e.g., tampering with or removing vehicle registration plates so as to render the vehicle unidentifiable on camera and use of in-vehicle radar detectors). With regard to avoiding punishment when apprehended, a range of strategies were reported by drivers from both countries, although a greater range of strategies were reported by Chinese drivers. As the results of the current research indicated that detection avoidance was strongly associated with greater self-reported speeding in both samples, efforts to reduce avoidance opportunities are strongly recommended. The practice of randomly scheduling speed camera locations, as is current practice in Queensland, offers one way to minimise site learning. The findings of this research indicated that this practice should continue. However, they also indicated that additional strategies are needed to reduce opportunities to evade detection. The use of point-to-point speed detection (also known as sectio
Resumo:
Despite recent developments in fixed-film combined biological nutrients removal (BNR) technology; fixed-film systems (i.e., biofilters), are still at the early stages of development and their application has been limited to a few laboratory-scale experiments. Achieving enhanced biological phosphorus removal in fixed-film systems requires exposing the micro-organisms and the waste stream to alternating anaerobic/aerobic or anaerobic/anoxic conditions in cycles. The concept of cycle duration (CD) as a process control parameter is unique to fixed-film BNR systems, has not been previously investigated, and can be used to optimise the performance of such systems. The CD refers to the elapsed time before the biomass is re-exposed to the same environmental conditions in cycles. Fixed-film systems offer many advantages over suspended growth systems such as reduced operating costs, simplicity of operation, absence of sludge recycling problems, and compactness. The control of nutrient discharges to water bodies, improves water quality, fish production, and allow water reuse. The main objective of this study was to develop a fundamental understanding of the effect of CD on the transformations of nutrients in fixed-film biofilter systems subjected to alternating aeration I no-aeration cycles A fixed-film biofilter system consisting of three up-flow biofilters connected in series was developed and tested. The first and third biofilters were operated in a cyclic mode in which the biomass was subjected to aeration/no-aeration cycles. The influent wastewater was simulated aquaculture whose composition was based on actual water quality parameters of aquacuture wastewater from a prawn grow-out facility. The influent contained 8.5 - 9:3 mg!L a111monia-N, 8.5- 8.7 mg/L phosphate-P, and 45- 50 mg!L acetate. Two independent studies were conducted at two biofiltration rates to evaluate and confirm the effect of CD on nutrient transformations in the biofilter system for application in aquaculture: A third study was conducted to enhance denitrification in the system using an external carbon- source at a rate varying from 0-24 ml/min. The CD was varied in the range of0.25- 120 hours for the first two studies and fixed at 12 hours for the third study. This study identified the CD as an important process control parameter that can be used to optimise the performance of full-scale fixed-film systems for BNR which represents a novel contribution in this field of research. The CD resulted in environmental conditions that inhibited or enhanced nutrient transformations. The effect of CD on BNR in fixed-film systems in terms of phosphorus biomass saturation and depletion has been established. Short CDs did not permit the establishment of anaerobic activity in the un-aerated biofilter and, thus, inhibited phosphorus release. Long CDs resulted in extended anaerobic activity and, thus, resulted in active phosphorus release. Long CDs, however, resulted in depleting the biomass phosphorus reservoir in the releasing biofilter and saturating the biomass phosphorus reservoir in the up-taking biofilter in the cycle. This phosphorus biomass saturation/depletion phenomenon imposes a practical limit on how short or long the CD can be. The length of the CD should be somewhere just before saturation or depletion occur and for the system tested, the optimal CD was 12 hours for the biofiltration rates tested. The system achieved limited net phosphorus removal due to the limited sludge wasting and lack of external carbon supply during phosphorus uptake. The phosphorus saturation and depletion reflected the need to extract phosphorus from the phosphorus-rich micro-organisms, for example, through back-washing. The major challenges of achieving phosphorus removal in the system included: (I) overcoming the deterioration in the performance of the system during the transition period following the start of each new cycle; and (2) wasting excess phosphorus-saturated biomass following the aeration cycle. Denitrification occurred in poorly aerated sections of the third biofilter and generally declined as the CD increased and as the time progressed in the individual cycle. Denitrification and phosphorus uptake were supplied by an internal organic carbon source, and the addition of an external carbon source (acetate) to the third biofilter resulted in improved denitrification efficiency in the system from 18.4 without supplemental carbon to 88.7% when the carbon dose reached 24 mL/min The removal of TOC and nitrification improved as the CD increased, as a result of the reduction in the frequency of transition periods between the cycles. A conceptual design of an effective fixed-film BNR biofilter system for the treatment of the influent simulated aquaculture wastewater was proposed based on the findings of the study.
Resumo:
Stream ciphers are encryption algorithms used for ensuring the privacy of digital telecommunications. They have been widely used for encrypting military communications, satellite communications, pay TV encryption and for voice encryption of both fixed lined and wireless networks. The current multi year European project eSTREAM, which aims to select stream ciphers suitable for widespread adoptation, reflects the importance of this area of research. Stream ciphers consist of a keystream generator and an output function. Keystream generators produce a sequence that appears to be random, which is combined with the plaintext message using the output function. Most commonly, the output function is binary addition modulo two. Cryptanalysis of these ciphers focuses largely on analysis of the keystream generators and of relationships between the generator and the keystream it produces. Linear feedback shift registers are widely used components in building keystream generators, as the sequences they produce are well understood. Many types of attack have been proposed for breaking various LFSR based stream ciphers. A recent attack type is known as an algebraic attack. Algebraic attacks transform the problem of recovering the key into a problem of solving multivariate system of equations, which eventually recover the internal state bits or the key bits. This type of attack has been shown to be effective on a number of regularly clocked LFSR based stream ciphers. In this thesis, algebraic attacks are extended to a number of well known stream ciphers where at least one LFSR in the system is irregularly clocked. Applying algebriac attacks to these ciphers has only been discussed previously in the open literature for LILI-128. In this thesis, algebraic attacks are first applied to keystream generators using stop-and go clocking. Four ciphers belonging to this group are investigated: the Beth-Piper stop-and-go generator, the alternating step generator, the Gollmann cascade generator and the eSTREAM candidate: the Pomaranch cipher. It is shown that algebraic attacks are very effective on the first three of these ciphers. Although no effective algebraic attack was found for Pomaranch, the algebraic analysis lead to some interesting findings including weaknesses that may be exploited in future attacks. Algebraic attacks are then applied to keystream generators using (p; q) clocking. Two well known examples of such ciphers, the step1/step2 generator and the self decimated generator are investigated. Algebraic attacks are shown to be very powerful attack in recovering the internal state of these generators. A more complex clocking mechanism than either stop-and-go or the (p; q) clocking keystream generators is known as mutual clock control. In mutual clock control generators, the LFSRs control the clocking of each other. Four well known stream ciphers belonging to this group are investigated with respect to algebraic attacks: the Bilateral-stop-and-go generator, A5/1 stream cipher, Alpha 1 stream cipher, and the more recent eSTREAM proposal, the MICKEY stream ciphers. Some theoretical results with regards to the complexity of algebraic attacks on these ciphers are presented. The algebraic analysis of these ciphers showed that generally, it is hard to generate the system of equations required for an algebraic attack on these ciphers. As the algebraic attack could not be applied directly on these ciphers, a different approach was used, namely guessing some bits of the internal state, in order to reduce the degree of the equations. Finally, an algebraic attack on Alpha 1 that requires only 128 bits of keystream to recover the 128 internal state bits is presented. An essential process associated with stream cipher proposals is key initialization. Many recently proposed stream ciphers use an algorithm to initialize the large internal state with a smaller key and possibly publicly known initialization vectors. The effect of key initialization on the performance of algebraic attacks is also investigated in this thesis. The relationships between the two have not been investigated before in the open literature. The investigation is conducted on Trivium and Grain-128, two eSTREAM ciphers. It is shown that the key initialization process has an effect on the success of algebraic attacks, unlike other conventional attacks. In particular, the key initialization process allows an attacker to firstly generate a small number of equations of low degree and then perform an algebraic attack using multiple keystreams. The effect of the number of iterations performed during key initialization is investigated. It is shown that both the number of iterations and the maximum number of initialization vectors to be used with one key should be carefully chosen. Some experimental results on Trivium and Grain-128 are then presented. Finally, the security with respect to algebraic attacks of the well known LILI family of stream ciphers, including the unbroken LILI-II, is investigated. These are irregularly clock- controlled nonlinear filtered generators. While the structure is defined for the LILI family, a particular paramater choice defines a specific instance. Two well known such instances are LILI-128 and LILI-II. The security of these and other instances is investigated to identify which instances are vulnerable to algebraic attacks. The feasibility of recovering the key bits using algebraic attacks is then investigated for both LILI- 128 and LILI-II. Algebraic attacks which recover the internal state with less effort than exhaustive key search are possible for LILI-128 but not for LILI-II. Given the internal state at some point in time, the feasibility of recovering the key bits is also investigated, showing that the parameters used in the key initialization process, if poorly chosen, can lead to a key recovery using algebraic attacks.
Resumo:
In this paper, a static synchronous series compensator (SSSC), along with a fixed capacitor, is used to avoid torsional mode instability in a series compensated transmission system. A 48-step harmonic neutralized inverter is used for the realization of the SSSC. The system under consideration is the IEEE first benchmark model on SSR analysis. The system stability is studied both through eigenvalue analysis and EMTDC/PSCAD simulation studies. It is shown that the combination of the SSSC and the fixed capacitor improves the synchronizing power coefficient. The presence of the fixed capacitor ensures increased damping of small signal oscillations. At higher levels of fixed capacitor compensation, a damping controller is required to stabilize the torsional modes of SSR.
Resumo:
The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, commonly employ Bank-to-Turn ma- neuvers to change heading and thus direction of travel. Whilst effective, banking an aircraft during the inspection of ground based features hinders data collection, with body fixed sen- sors angled away from the direction of turn and a panning motion induced through roll rate that can reduce data quality. By adopting Skid-to-Turn maneuvers, the aircraft can change heading whilst maintaining wings level flight, thus allowing body fixed sensors to main- tain a downward facing orientation. An Image-Based Visual Servo controller is developed to directly control the position of features as captured by onboard inspection sensors. This improves on the indirect approach taken by other tracking controllers where a course over ground directly above the feature is assumed to capture it centered in the field of view. Performance of the proposed controller is compared against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to replicate the field of view of a body fixed camera.
Resumo:
With daily commercial and social activity in cities, regulation of train service in mass rapid transit railways is necessary to maintain service and passenger flow. Dwell-time adjustment at stations is one commonly used approach to regulation of train service, but its control space is very limited. Coasting control is a viable means of meeting the specific run-time in an inter-station run. The current practice is to start coasting at a fixed distance from the departed station. Hence, it is only optimal with respect to a nominal operational condition of the train schedule, but not the current service demand. The advantage of coasting can only be fully secured when coasting points are determined in real-time. However, identifying the necessary starting point(s) for coasting under the constraints of current service conditions is no simple task as train movement is governed by a large number of factors. The feasibility and performance of classical and heuristic searching measures in locating coasting point(s) is studied with the aid of a single train simulator, according to specified inter-station run times.
Resumo:
The railway service is now the major transportation means in most of the countries around the world. With the increasing population and expanding commercial and industrial activities, a high quality of railway service is the most desirable. Train service usually varies with the population activities throughout a day and train coordination and service regulation are then expected to meet the daily passengers' demand. Dwell time control at stations and fixed coasting point in an inter-station run are the current practices to regulate train service in most metro railway systems. However, a flexible and efficient train control and operation is not always possible. To minimize energy consumption of train operation and make certain compromises on the train schedule, coast control is an economical approach to balance run-time and energy consumption in railway operation if time is not an important issue, particularly at off-peak hours. The capability to identify the starting point for coasting according to the current traffic conditions provides the necessary flexibility for train operation. This paper presents an application of genetic algorithms (GA) to search for the appropriate coasting point(s) and investigates the possible improvement on fitness of genes. Single and multiple coasting point control with simple GA are developed to attain the solutions and their corresponding train movement is examined. Further, a hierarchical genetic algorithm (HGA) is introduced here to identify the number of coasting points required according to the traffic conditions, and Minimum-Allele-Reserve-Keeper (MARK) is adopted as a genetic operator to achieve fitter solutions.