127 resultados para exhibition wall
Resumo:
The expression of a narrative realized through a constructed interior environment provides a significant and engaging response that falls between the realms of design and theatre in which the space itself provides the role of actor.
Resumo:
This exhibition, as part of the Queensland Government Unlimited: Designing for the Asia Pacific Program, showcased the unleashed: queensland design on tour 2010 Exhibition and outcomes from the aligned goDesign Travelling Workshop Program for Regional Secondary School Students, delivered concurrently by the Design Institute of Australia Queensland Branch and QUT, between February and September 2010 in the six regional Queensland towns of Chinchilla, Mt Isa, Quilpie, Emerald, Gladstone and Bundaberg. Mirroring the delivery of the exhibition opening in the local gallery of each regional town, student design work produced during the workshop program was displayed alongside the award winning work of professional visual communication, interior and product designers and design students from the DIA qdos Awards Program of 2008 and 2009. The resulting linkages and connections made possible by the aligned programs, and the students’ creative product, based on their own interpretation of the local culture, environment, economy and politics of their town developed through a design process, were the subject of the exhibition, captured through photos and dialogues (digital and print format) and sketchbooks. The two programs and resulting final ‘retrospective’ exhibition, addressed the key objectives outlined in the Queensland Government Arts Queensland Design Strategy 2020 (2008-2012 Action plan), which focuses on the promotion of a better understanding of the value of good design across all of the state, by enhancing the collaboration between industry, the professional body for design, the government and the education sectors, and by providing opportunities for young people to engage in design. The exhibition highlighted the benefits for regional communities in being exposed to design exhibitions, and linking with tertiary educators and design practitioners to participate in design-based learning activities which broaden student understanding of their learning and subsequent career opportunities, by establishing a meaningful connection with real world issues of place, identity and sustainability.
Resumo:
The annual YODEX (Young Designers Exhibition) in Taipei as the largest student design show in Asia presents a substantial opportunity as a profiling event for QUT. In 2011 an interactive and highly engaging QUT exhibition ensured direct communication with participants and first hand exposure to innovative design approaches.
Resumo:
Creative Practice exhibited at the Brisbane Square Library Illustrating Fashion exhibition. Accompanied works from acclaimed fashion labels, Easton Pearson Julie Tengdhal and Dogstar.
Resumo:
'my mother is water, my father is wood' was an installation comprised of two large cork discs mounted on the gallery floor and wall, overlaid with images of photographic and archival research evidence, and a turned wood sculptural object. It also included a short video work on a miniature screen embedded in the upright disc. The work explored the language of natural elements and the structure of genealogical research to discuss the Scandinavian history of Queensland and my own family. The work was selected by the directors of LEVEL ARI in Brisbane for inclusion in their 2011 exhibitions program.
Resumo:
This paper investigates energy saving potential of commercial building by living wall and green façade system using Envelope Thermal Transfer Value (ETTV) equation in Sub-tropical climate of Australia. Energy saving of four commercial buildings was quantified by applying living wall and green façade system to the west facing wall. A field experimental facility, from which temperature data of living wall system was collected, was used to quantify wall temperatures and heat gain under controlled conditions. The experimental parameters were accumulated with extensive data of existing commercial building to quantify energy saving. Based on temperature data of living wall system comprised of Australian native plants, equivalent temperature of living wall system has been computed. Then, shading coefficient of plants in green façade system has been included in mathematical equation and in graphical analysis. To minimize the air-conditioned load of commercial building, therefore to minimize the heat gain of commercial building, an analysis of building heat gain reduction by living wall and green façade system has been performed. Overall, cooling energy performance of commercial building before and after living wall and green façade system application has been examined. The quantified energy saving showed that only living wall system on opaque part of west facing wall can save 8-13 % of cooling energy consumption where as only green façade system on opaque part of west facing wall can save 9.5-18% cooling energy consumption of commercial building. Again, green façade system on fenestration system on west facing wall can save 28-35 % of cooling energy consumption where as combination of both living wall on opaque part of west facing wall and green façade on fenestration system on west facing wall can save 35-40% cooling energy consumption of commercial building in sub-tropical climate of Australia.
Resumo:
This brief paper will introduce a new theoretical framework or model which may be useful for putting a structure around the theme of ageing and its accompanying grief and loss. It is especially appropriate in the context of counselling families living with dementia, including those individuals with a diagnosis of alzheimers disease. The paper describes the origin of the Spanish expressions of the `wall of tears’ and `house of tears’ and involves an historical narrative of the first author as context to the framework.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.
Resumo:
Fire safety of buildings has been recognised as very important by the building industry and the community at large. Gypsum plasterboards are widely used to protect light gauge steel frame (LSF) walls all over the world. Gypsum contains free and chemically bound water in its crystal structure. Plasterboard also contains gypsum (CaSO4.2H2O) and calcium carbonate (CaCO3). The dehydration of gypsum and the decomposition of calcium carbonate absorb heat, and thus are able to protect LSF walls from fires. Kolarkar and Mahendran (2008) developed an innovative composite wall panel system, where the insulation was sandwiched between two plasterboards to improve the thermal and structural performance of LSF wall panels under fire conditions. In order to understand the performance of gypsum plasterboards and LSF wall panels under standard fire conditions, many experiments were conducted in the Fire Research Laboratory of Queensland University of Technology (Kolarkar, 2010). Fire tests were conducted on single, double and triple layers of Type X gypsum plasterboards and load bearing LSF wall panels under standard fire conditions. However, suitable numerical models have not been developed to investigate the thermal performance of LSF walls using the innovative composite panels under standard fire conditions. Continued reliance on expensive and time consuming fire tests is not acceptable. Therefore this research developed suitable numerical models to investigate the thermal performance of both plasterboard assemblies and load bearing LSF wall panels. SAFIR, a finite element program, was used to investigate the thermal performance of gypsum plasterboard assemblies and LSF wall panels under standard fire conditions. Appropriate values of important thermal properties were proposed for plasterboards and insulations based on laboratory tests, literature review and comparisons of finite element analysis results of small scale plasterboard assemblies from this research and corresponding experimental results from Kolarkar (2010). The important thermal properties (thermal conductivity, specific heat capacity and density) of gypsum plasterboard and insulation materials were proposed as functions of temperature and used in the numerical models of load bearing LSF wall panels. Using these thermal properties, the developed finite element models were able to accurately predict the time temperature profiles of plasterboard assemblies while they predicted them reasonably well for load bearing LSF wall systems despite the many complexities that are present in these LSF wall systems under fires. This thesis presents the details of the finite element models of plasterboard assemblies and load bearing LSF wall panels including those with the composite panels developed by Kolarkar and Mahendran (2008). It examines and compares the thermal performance of composite panels developed based on different insulating materials of varying densities and thicknesses based on 11 small scale tests, and makes suitable recommendations for improved fire performance of stud wall panels protected by these composite panels. It also presents the thermal performance data of LSF wall systems and demonstrates the superior performance of LSF wall systems using the composite panels. Using the developed finite element of models of LSF walls, this thesis has proposed new LSF wall systems with increased fire rating. The developed finite element models are particularly useful in comparing the thermal performance of different wall panel systems without time consuming and expensive fire tests.
Resumo:
PRESENTED by the Escapists, Boy Girl Wall tells the unlikely yet strangely inevitable story of the series of events by which an odd assortment of people, objects and chance occurrences conspire to bring together lonely neighbours Thomas and Alethea...
Resumo:
Cold-formed steel stud walls are an important component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin-walled steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of these wall systems while past research showed contradicting results about the benefits of cavity insulation. This research proposed a new LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating of walls. Full scale fire tests were conducted using both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. Eleven full scale load bearing wall specimens were tested to study the thermal and structural performances of the load bearing wall assemblies under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls while also providing good explanations and supporting test data to overcome the incorrect industry assumptions about cavity insulation. Tests demonstrated that the use of external insulation in a composite panel form enhanced the thermal and structural performances of stud walls and increased their fire resistance rating significantly. This paper presents the details of the full scale fire tests of load-bearing wall assemblies lined with plasterboards and different types of insulation under varying load ratios. Test results including the temperature and deflection profiles of walls measured during the fire tests will be presented along with their failure modes and failure times.
Resumo:
Fire safety of buildings has been recognised as very important by the building industry and the community at large. Traditionally, increased fire rating is provided by simply adding more plasterboards to light gauge steel frame (LSF) walls, which is inefficient. Many research studies have been undertaken to investigate the thermal behaviour of traditional LSF stud wall systems under standard fire conditions. However, no research has been undertaken on the thermal behaviour of LSF stud walls using the recently proposed composite panel. Extensive fire testing of both non-load bearing and load bearing wall panels was conducted in this research based on the standard time-temperature curve in AS1530.4. Three groups of LSF wall specimens were tested with no insulation, cavity insulation and the new composite panel based on an external insulation layer between plasterboards. This paper presents the details of this experimental study into the thermal performance of non-load bearing walls lined with various configurations of plasterboard and insulation. Extensive descriptive and numerical results of the tested non-load bearing wall panels given in this paper provide a thorough understanding of their thermal behaviour, and valuable time-temperature data that can be used to validate numerical models. Test results showed that the innovative composite stud wall systems outperformed the traditional stud wall systems in terms of their thermal performance, giving a much higher fire rating.
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.
Resumo:
Research background: The general public is predominantly unaware of the complexities and skills involved in the fashion supply chain (design, manufacture and retail) of couture/bespoke garments. As cited in McMahon and Morley (2011) “While a high price tag is widely accepted as a necessary element of luxury products (Fionda &Moore, 2009) this must be accompanied by a story that gives the items intrinsic as well as extrinsic value (Keller, 2009). Research question: Is it possible to simulate a fashion couture studio environment in a non-traditional public space in order to produce and promote the processes involved in couture designs; each with their own story and aligned to the aesthetic of six collaborating high profile couture fashion retailers? Research contribution: The Couture Academy project allowed the team to curate the story behind the couture design and supply chain process. It was an experimental, curated, ‘hot-house’ fashion design project undertaken in real time to create one-off couture garments, inspired by key seasonal fashion trends as determined by leading Westfield retailers. The project was industry based, with Westfield Chermside as the launch pad for six QUT fashion students to experiment with design nuances aligned to renowned national fashion industry retailers; Cue, Dissh, Kitten D'Amour, Mombasa and Pink Mint. Industry mentors were assigned to each student designer, in order to heighten the design challenge. The exhibition consisted of a pop-up couture workshop based at Westfield Chermside. A complete fashion studio (sewing machines, pattern-cutting tables and mannequins) was set up for a seven day period in the foyer of the shopping centre with the public watching as the design process unfolded in real-time. The final design outcomes were paraded at the Southbank Precinct to a prominent industry and media panel, with the winner receiving a $2000 prize to fund a research trip to an international fashion capital of their choice. Research significance: This curated fashion project was funded by Westfield Group Australia. "It was the most successful season launch Westfield Chermside has ever had from both an average volume for exposure perspective, and in terms of the level of engagement with retailers and shoppers," said Laura Walls, Westfield Public Relations Consultant. Significant media coverage was generated; including three full pages of editorial in Brisbane’s Sunday Mail, with an estimated publicity value of $95,000. And public exposure through the live project/exhibition was estimated at 7,000 people over the 7 days.
Resumo:
The EMAGN2012 exhibition, a partnership between the Australian Institute of Architects ‘2012 National Architecture Conference: EXPERIENCE’ and State Library of Queensland’s Asia Pacific Design Library. The exhibition was held in the Asia Pacific Design Library from the 10 May-10 June 2012. The EMAGN2012 exhibition celebrates the diversity, quality and experimental nature of emerging architectural work undertaken in Australia in the last 10 years. The annual exhibition is an initiative of the Emerging Architects and Graduate Network (EMAGN) currently active in all Australian states and territories. The EMAGN national group established in 2006, seeks to provide a vehicle through which the practice and production of architecture can be engaged with and reflected upon by the public, with the aim of fostering a much broader cultural awareness of Australian architecture.