445 resultados para energy deposited
Resumo:
This paper will summarise the findings from a study that explored the link between dwelling design, or type, and energy efficiencies in sub-tropical climates. An increasing number of government and private sector development companies are initiating projects that aim to deliver enhanced environmental outcomes at both sub-divisional and dwelling levels. The study used AccuRate, a new thermal modelling tool developed by CSIRO that responds to the need to improve ventilation modelling. The study found that dwellings developed in conjunction with the Departments of Housing and Public Works have set the benchmark. It provides a snapshot of the energy efficiency of a range of dwelling types found in recent subdivisions. However, the trend toward increasing urban densities may reduce the likelihood that cooling breezes will be available to cool dwellings. The findings are relevant to regulators, designers and industry in all states interested in reducing the energy used to cool dwellings in summer.
Resumo:
Worldwide, the current pattern of urban development is unsustainable and metropolitan planning and development strategies deliver poor environmental outcomes in relation to energy production. As a result, an increasing number of governments and private sector development companies are initiating projects that aim to deliver enhanced environmental outcomes rather than a ‘business as usual’ approach. This paper will summarise the findings from a study that explored the link between building orientation and energy efficiencies in sub-tropical and tropical climates. The study used a new thermal modelling software tool developed by CSIRO that responds more accurately to residential heating and cooling energy performance in those climate zones. This software tool responds to industry criticisms regarding cold climate modelling systems that do not make sufficient allowance for natural ventilation. The study examined a range of low, medium and high-density dwelling types and investigated the impact of orientation, insulation, ventilation and shading devices on energy efficiencies. This paper will examine the findings from the medium and high-density case study developments as these are relevant to residential developments in many South East Asian countries, such as Singapore, Hong Kong and Malaysia. Finally, the paper will explore the potential benefits that medium and high-density residential developments have in the development of ‘solar cities’ and ‘solar suburbs’.
Resumo:
This report summarises the findings from the Sustainable Subdivisions: Energy-Efficient Design project. As new energy-efficiency regulations are developed, there will be a significant demand for information on available assessment tools for rating energy-efficient dwellings, and subdivisional issues such as orientation and solar access will become increasingly important. There will also be increased pressure for products that deliver energy efficiency, such as solar technology, glazing systems, insulation and low-energy building products and materials. The objectives of the Sustainable Subdivisions: Energy-Efficient Design project were to:
Resumo:
This thesis is a documented energy audit and long term study of energy and water reduction in a ghee factory. Global production of ghee exceeds 4 million tonnes annually. The factory in this study refines dairy products by non-traditional centrifugal separation and produces 99.9% pure, canned, crystallised Anhydrous Milk Fat (Ghee). Ghee is traditionally made by batch processing methods. The traditional method is less efficient, than centrifugal separation. An in depth systematic investigation was conducted of each item of major equipment including; ammonia refrigeration, a steam boiler, canning equipment, pumps, heat exchangers and compressed air were all fine-tuned. Continuous monitoring of electrical usage showed that not every initiative worked, others had pay back periods of less than a year. In 1994-95 energy consumption was 6,582GJ and in 2003-04 it was 5,552GJ down 16% for a similar output. A significant reduction in water usage was achieved by reducing the airflow in the refrigeration evaporative condensers to match the refrigeration load. Water usage has fallen 68% from18ML in 1994-95 to 5.78ML in 2003-04. The methods reported in this thesis could be applied to other industries, which have similar equipment, and other ghee manufacturers.
Resumo:
Damage localization induced by strain softening can be predicted by the direct minimization of a global energy function. This article concerns the computational strategy for implementing this principle for softening materials such as concrete. Instead of using heuristic global optimization techniques, our strategies are a hybrid of local optimization methods with a path-finding approach to ensure a global optimum. With admissible nodal displacements being independent variables, it is easy to deal with the geometric (mesh) constraint conditions. The direct search optimization methods recover the localized solutions for a range of softening lattice models which are representative of quasi-brittle structures
Resumo:
The Body Mass Index (BMI) has been used worldwide as an indicator of fatness. However, the universal cut-off points by the World Health Organisation (WHO) classification may not be appropriate for every ethnic group when consider the relationship with their actual total body fatness(%BF). The application of population-specific classifications to assess BMI may be more relevant to public health. Ethnic differences in the BMI%BF relationship between 45 Japanese and 42 Australian-Caucasian males were assessed using whole body dual-energy X-ray absorptiometry (DXA) scan and anthropometry using a standard protocol. Japanese males had significantly (p<0.05) greater %BF at given BMI values than Australian males. When this is taken into account the newly proposed Asia-Pacific BMI classification of BMI 23 as overweight and 25 as obese may better assess the level of obesity that is associated increased health risks for this population. To clarify the current findings, further studies that compare the relationships across other Japanese populations are recommended.
Resumo:
Energy efficient lubricants are becoming increasingly popular. This is due to a global increase in environmental awareness combined with the potential of reducing operating costs. A new test method of evaluating the energy efficiency of gear oils has been described in this report. The method involves measuring the power required by an FZG test rig to run while using a particular test lubricant. For each oil that was being evaluated, the rig was run for 10 minutes at a load stage of 10. Six extreme pressure (EP) industrial gear oils of mineral base were tested. The difference in power requirements between the best and the worst performing oils was 2.77 and 3.24 kW, respectively. This equates to a 14.6% reduction in power, a significant amount if considered in relation to a high powered industrial machine. The oils of superior performance were noticed to run at reduced temperatures. They were also more expensive than the other products of lesser performance.
Resumo:
A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.