217 resultados para diffusion coefficient
Resumo:
In this paper, we derive a new nonlinear two-sided space-fractional diffusion equation with variable coefficients from the fractional Fick’s law. A semi-implicit difference method (SIDM) for this equation is proposed. The stability and convergence of the SIDM are discussed. For the implementation, we develop a fast accurate iterative method for the SIDM by decomposing the dense coefficient matrix into a combination of Toeplitz-like matrices. This fast iterative method significantly reduces the storage requirement of O(n2)O(n2) and computational cost of O(n3)O(n3) down to n and O(nlogn)O(nlogn), where n is the number of grid points. The method retains the same accuracy as the underlying SIDM solved with Gaussian elimination. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.
Resumo:
The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
Resumo:
An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.
Resumo:
In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order $0<\alpha<1$ ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent with $O(\tau+h^2)$, where $\tau$ and $h$ are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.
Resumo:
In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.