193 resultados para detection systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Video surveillance technology, based on Closed Circuit Television (CCTV) cameras, is one of the fastest growing markets in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. To overcome this limitation, it is necessary to have “intelligent” processes which are able to highlight the salient data and filter out normal conditions that do not pose a threat to security. In order to create such intelligent systems, an understanding of human behaviour, specifically, suspicious behaviour is required. One of the challenges in achieving this is that human behaviour can only be understood correctly in the context in which it appears. Although context has been exploited in the general computer vision domain, it has not been widely used in the automatic suspicious behaviour detection domain. So, it is essential that context has to be formulated, stored and used by the system in order to understand human behaviour. Finally, since surveillance systems could be modeled as largescale data stream systems, it is difficult to have a complete knowledge base. In this case, the systems need to not only continuously update their knowledge but also be able to retrieve the extracted information which is related to the given context. To address these issues, a context-based approach for detecting suspicious behaviour is proposed. In this approach, contextual information is exploited in order to make a better detection. The proposed approach utilises a data stream clustering algorithm in order to discover the behaviour classes and their frequency of occurrences from the incoming behaviour instances. Contextual information is then used in addition to the above information to detect suspicious behaviour. The proposed approach is able to detect observed, unobserved and contextual suspicious behaviour. Two case studies using video feeds taken from CAVIAR dataset and Z-block building, Queensland University of Technology are presented in order to test the proposed approach. From these experiments, it is shown that by using information about context, the proposed system is able to make a more accurate detection, especially those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information give critical feedback to the system designers to refine the system. Finally, the proposed modified Clustream algorithm enables the system to both continuously update the system’s knowledge and to effectively retrieve the information learned in a given context. The outcomes from this research are: (a) A context-based framework for automatic detecting suspicious behaviour which can be used by an intelligent video surveillance in making decisions; (b) A modified Clustream data stream clustering algorithm which continuously updates the system knowledge and is able to retrieve contextually related information effectively; and (c) An update-describe approach which extends the capability of the existing human local motion features called interest points based features to the data stream environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Video surveillance systems using Closed Circuit Television (CCTV) cameras, is one of the fastest growing areas in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. This work attempts to address these problems by proposing an automatic suspicious behaviour detection which utilises contextual information. The utilisation of contextual information is done via three main components: a context space model, a data stream clustering algorithm, and an inference algorithm. The utilisation of contextual information is still limited in the domain of suspicious behaviour detection. Furthermore, it is nearly impossible to correctly understand human behaviour without considering the context where it is observed. This work presents experiments using video feeds taken from CAVIAR dataset and a camera mounted on one of the buildings Z-Block) at the Queensland University of Technology, Australia. From these experiments, it is shown that by exploiting contextual information, the proposed system is able to make more accurate detections, especially of those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information gives critical feedback to the system designers to refine the system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper provides a new general approach for defining coherent generators in power systems based on the coherency in low frequency inter-area modes. The disturbance is considered to be distributed in the network by applying random load changes which is the random walk representation of real loads instead of a single fault and coherent generators are obtained by spectrum analysis of the generators velocity variations. In order to find the coherent areas and their borders in the inter-connected networks, non-generating buses are assigned to each group of coherent generator using similar coherency detection techniques. The method is evaluated on two test systems and coherent generators and areas are obtained for different operating points to provide a more accurate grouping approach which is valid across a range of realistic operating points of the system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new framework for distributed intrusion detection based on taint marking. Our system tracks information flows between applications of multiple hosts gathered in groups (i.e., sets of hosts sharing the same distributed information flow policy) by attaching taint labels to system objects such as files, sockets, Inter Process Communication (IPC) abstractions, and memory mappings. Labels are carried over the network by tainting network packets. A distributed information flow policy is defined for each group at the host level by labeling information and defining how users and applications can legally access, alter or transfer information towards other trusted or untrusted hosts. As opposed to existing approaches, where information is most often represented by two security levels (low/high, public/private, etc.), our model identifies each piece of information within a distributed system, and defines their legal interaction in a fine-grained manner. Hosts store and exchange security labels in a peer to peer fashion, and there is no central monitor. Our IDS is implemented in the Linux kernel as a Linux Security Module (LSM) and runs standard software on commodity hardware with no required modification. The only trusted code is our modified operating system kernel. We finally present a scenario of intrusion in a web service running on multiple hosts, and show how our distributed IDS is able to report security violations at each host level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Chinese government should be commended for its open, concerted, and rapid response to the recent H7N9 influenza outbreak. However, the first known case was not reported until 48 days after disease onset.1 Although the difficulties in detecting the virus and the lack of suitable diagnostic methods have been the focus of discussion,2 systematic limitations that may have contributed to this delay have hardly been discussed. The detection speed of surveillance systems is limited by the highly structured nature of information flow and hierarchical organisation of these systems. Flu surveillance usually relies on notification to a central authority of laboratory confirmed cases or presentations to sentinel practices for flu-like illness. Each step in this pathway presents a bottleneck at which information and time can be lost; this limitation must be dealt with...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Person tracking systems to date have either relied on motion detection or optical flow as a basis for person detection and tracking. As yet, systems have not been developed that utilise both these techniques. We propose a person tracking system that uses both, made possible by a novel hybrid optical flow-motion detection technique that we have developed. This provides the system with two methods of person detection, helping to avoid missed detections and the need to predict position, which can lead to errors in tracking and mistakes when handling occlusion situations. Our results show that our system is able to track people accurately, with an average error less than four pixels, and that our system outperforms the current CAVIAR benchmark system.