50 resultados para anomalies
Resumo:
Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.
Resumo:
The huge amount of CCTV footage available makes it very burdensome to process these videos manually through human operators. This has made automated processing of video footage through computer vision technologies necessary. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned ‘normal’ model. There is no precise and exact definition for an abnormal activity; it is dependent on the context of the scene. Hence there is a requirement for different feature sets to detect different kinds of abnormal activities. In this work we evaluate the performance of different state of the art features to detect the presence of the abnormal objects in the scene. These include optical flow vectors to detect motion related anomalies, textures of optical flow and image textures to detect the presence of abnormal objects. These extracted features in different combinations are modeled using different state of the art models such as Gaussian mixture model(GMM) and Semi- 2D Hidden Markov model(HMM) to analyse the performances. Further we apply perspective normalization to the extracted features to compensate for perspective distortion due to the distance between the camera and objects of consideration. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.
Resumo:
This article focuses on the anomalies and contradictions surrounding the notion of ‘international juvenile justice’, whether in its pessimistic (neoliberal penality and penal severity) or optimistic (universal children’s rights and rights compliance) incarnations. It argues for an analysis which recognises firstly, the uneven, multi-facetted and heterogeneous nature of the processes of globalisation and secondly, how the global, the international, the national and the local are not mutually exclusive but continually interact to re-constitute, re-make and challenge each other.
Resumo:
Detecting anomalies in the online social network is a significant task as it assists in revealing the useful and interesting information about the user behavior on the network. This paper proposes a rule-based hybrid method using graph theory, Fuzzy clustering and Fuzzy rules for modeling user relationships inherent in online-social-network and for identifying anomalies. Fuzzy C-Means clustering is used to cluster the data and Fuzzy inference engine is used to generate rules based on the cluster behavior. The proposed method is able to achieve improved accuracy for identifying anomalies in comparison to existing methods.
Resumo:
More children are now being diagnosed with chromosome abnormalities. Some chromosome disorder syndromes are relatively well known; while others are so rare that there is only limited evidence about their likely impact on learning and development. For educators, a basic level of knowledge about chromosome abnormalities is important for understanding the literature and communicating with families and professionals. This paper describes chromosomes, and the numerical and structural anomalies that can occur, usually spontaneously during early cell division. Distinctive features of various chromosome syndromes are summarised before a discussion of the rare chromosome disorders that are labelled, not with a syndrome name, but simply by a description of the chromosome number, size and shape. Because of the potential within-group variability that characterises syndromes, and the scarcity of literature about the rare chromosome disorders, expectations for learning and development of individual students need to be based on the range of possible outcomes that may be achievable.
Resumo:
The life history strategies of massive Porites corals make them a valuable resource not only as key providers of reef structure, but also as recorders of past environmental change. Yet recent documented evidence of an unprecedented increase in the frequency of mortality in Porites warrants investigation into the history of mortality and associated drivers. To achieve this, both an accurate chronology and an understanding of the life history strategies of Porites are necessary. Sixty-two individual Uranium–Thorium (U–Th) dates from 50 dead massive Porites colonies from the central inshore region of the Great Barrier Reef (GBR) revealed the timing of mortality to have occurred predominantly over two main periods from 1989.2 ± 4.1 to 2001.4 ± 4.1, and from 2006.4 ± 1.8 to 2008.4 ± 2.2 A.D., with a small number of colonies dating earlier. Overall, the peak ages of mortality are significantly correlated with maximum sea-surface temperature anomalies. Despite potential sampling bias, the frequency of mortality increased dramatically post-1980. These observations are similar to the results reported for the Southern South China Sea. High resolution measurements of Sr/Ca and Mg/Ca obtained from a well preserved sample that died in 1994.6 ± 2.3 revealed that the time of death occurred at the peak of sea surface temperatures (SST) during the austral summer. In contrast, Sr/Ca and Mg/Ca analysis in two colonies dated to 2006.9 ± 3.0 and 2008.3 ± 2.0, suggest that both died after the austral winter. An increase in Sr/Ca ratios and the presence of low Mg-calcite cements (as determined by SEM and elemental ratio analysis) in one of the colonies was attributed to stressful conditions that may have persisted for some time prior to mortality. For both colonies, however, the timing of mortality coincides with the 4th and 6th largest flood events reported for the Burdekin River in the past 60 years, implying that factors associated with terrestrial runoff may have been responsible for mortality. Our results show that a combination of U–Th and elemental ratio geochemistry can potentially be used to precisely and accurately determine the timing and season of mortality in modern massive Porites corals. For reefs where long-term monitoring data are absent, the ability to reconstruct historical events in coral communities may prove useful to reef managers by providing some baseline knowledge on disturbance history and associated drivers.
Resumo:
This paper assesses whether incorporating investor sentiment as conditioning information in asset-pricing models helps capture the impacts of the size, value, liquidity and momentum effects on risk-adjusted returns of individual stocks. We use survey sentiment measures and a composite index as proxies for investor sentiment. In our conditional framework, the size effect becomes less important in the conditional CAPM and is no longer significant in all the other models examined. Furthermore, the conditional models often capture the value, liquidity and momentum effects.
Resumo:
Heliothine moths (Lepidoptera: Heliothinae) include some of the world's most devastating pest species. Whereas the majority of nonpest heliothinae specialize on a single plant family, genus, or species, pest species are highly polyphagous, with populations often escalating in size as they move from one crop species to another. Here, we examine the current literature on heliothine host-selection behavior with the aim of providing a knowledge base for research scientists and pest managers. We review the host relations of pest heliothines, with a particular focus on Helicoverpa armigera (Hubner), the most economically damaging of all heliothine species. We then consider the important question of what constitutes a host plant in these moths, and some of the problems that arise when trying to determine host plant status from empirical studies on host use. The top six host plant families in the two main Australian pest species (H. armigera and Helicoverpa punctigera Wallengren) are the same and the top three (Asteraceae, Fabaceae, and Malvaceae) are ranked the same (in terms of the number of host species on which eggs or larvae have been identified), suggesting that these species may use similar cues to identify their hosts. In contrast, for the two key pest heliothines in the Americas, the Fabaceae contains approximate to 1/3 of hosts for both. For Helicoverpa zea (Boddie), the remaining hosts are more evenly distributed, with Solanaceae next, followed by Poaceae, Asteraceae, Malvaceae, and Rosaceae. For Heliothis virescens (F.), the next highest five families are Malvaceae, Asteraceae, Solanaceae, Convolvulaceae, and Scrophulariaceae. Again there is considerable overlap in host use at generic and even species level. H. armigera is the most widely distributed and recorded from 68 plant families worldwide, but only 14 families are recorded as a containing a host in all geographic areas. A few crop hosts are used throughout the range as expected, but in some cases there are anomalies, perhaps because host plant relation studies are not comparable. Studies on the attraction of heliothines to plant odors are examined in the context of our current understanding of insect olfaction, with the aim of better understanding the connection between odor perception and host choice. Finally, we discuss research into sustainable management of pest heliothines using knowledge of heliothine behavior and ecology. A coordinated international research effort is needed to advance our knowledge on host relations in widely distributed polyphagous species instead of the localized, piecemeal approaches to understanding these insects that has been the norm to date.
Resumo:
This research is a step forward in improving the accuracy of detecting anomaly in a data graph representing connectivity between people in an online social network. The proposed hybrid methods are based on fuzzy machine learning techniques utilising different types of structural input features. The methods are presented within a multi-layered framework which provides the full requirements needed for finding anomalies in data graphs generated from online social networks, including data modelling and analysis, labelling, and evaluation.
Resumo:
One of the Department of Defense's most pressing environmental problems is the efficient detection and identification of unexploded ordnance (UXO). In regions of highly magnetic soils, magnetic and electromagnetic sensors often detect anomalies that are of geologic origin, adding significantly to remediation costs. In order to develop predictive models for magnetic susceptibility, it is crucial to understand modes of formation and the spatial distribution of different iron oxides. Most rock types contain iron and their magnetic susceptibility is determined by the amount and form of iron oxides present. When rocks weather, the amount and form of the oxides change, producing concomitant changes in magnetic susceptibility. The type of iron oxide found in the weathered rock or regolith is a function of the duration and intensity of weathering, as well as the original content of iron in the parent material. The rate of weathering is controlled by rainfall and temperature; thus knowing the climate zone, the amount of iron in the lithology and the age of the surface will help predict the amount and forms of iron oxide. We have compiled analyses of the types, amounts, and magnetic properties of iron oxides from soils over a wide climate range, from semi arid grasslands, to temperate regions, and tropical forests. We find there is a predictable range of iron oxide type and magnetic susceptibility according to the climate zone, the age of the soil and the amount of iron in the unweathered regolith.
Resumo:
Purpose To investigate the frequency of convergence and accommodation anomalies in an optometric clinical setting in Mashhad, Iran, and to determine tests with highest accuracy in diagnosing these anomalies. Methods From 261 patients who came to the optometric clinics of Mashhad University of Medical Sciences during a month, 83 of them were included in the study based on the inclusion criteria. Near point of convergence (NPC), near and distance heterophoria, monocular and binocular accommodative facility (MAF and BAF, respectively), lag of accommodation, positive and negative fusional vergences (PFV and NFV, respectively), AC/A ratio, relative accommodation, and amplitude of accommodation (AA) were measured to diagnose the convergence and accommodation anomalies. The results were also compared between symptomatic and asymptomatic patients. The accuracy of these tests was explored using sensitivity (S), specificity (Sp), and positive and negative likelihood ratios (LR+, LR−). Results Mean age of the patients was 21.3 ± 3.5 years and 14.5% of them had specific binocular and accommodative symptoms. Convergence and accommodative anomalies were found in 19.3% of the patients; accommodative excess (4.8%) and convergence insufficiency (3.6%) were the most common accommodative and convergence disorders, respectively. Symptomatic patients showed lower values for BAF (p = .003), MAF (p = .001), as well as AA (p = .001) compared with asymptomatic patients. Moreover, BAF (S = 75%, Sp = 62%) and MAF (S = 62%, Sp = 89%) were the most accurate tests for detecting accommodative and convergence disorders in terms of both sensitivity and specificity. Conclusions Convergence and accommodative anomalies are the most common binocular disorders in optometric patients. Including tests of monocular and binocular accommodative facility in routine eye examinations as accurate tests to diagnose these anomalies requires further investigation.
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles, designed for monitoring degenerative disease effects in clinical neuroscience studies and drug trials. First we used a set of parameterized surfaces to represent the ventricles in a manually labeled set of 9 subjects' MRIs (atlases). We fluidly registered each of these atlases and mesh models to a set of MRIs from 12 Alzheimer's disease (AD) patients and 14 matched healthy elderly subjects, and we averaged the resulting meshes for each of these images. Validation experiments on expert segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease-related alterations monotonically improved as the number of atlases, N, was increased from 1 to 9. We then combined the segmentations with a radial mapping approach to localize ventricular shape differences in patients. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases, and we formulated a statistical stopping criterion to determine the optimal value of N. Anterior horn anomalies in Alzheimer's patients were only detected with the multi-atlas segmentation, which clearly outperformed the standard single-atlas approach.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages.
Resumo:
We report sensitive high mass resolution ion microprobe, stable isotopes (SHRIMP SI) multiple sulfur isotope analyses (32S, 33S, 34S) to constrain the sources of sulfur in three Archean VMS deposits—Teutonic Bore, Bentley, and Jaguar—from the Teutonic Bore volcanic complex of the Yilgarn Craton, Western Australia, together with sedimentary pyrites from associated black shales and interpillow pyrites. The pyrites from VMS mineralization are dominated by mantle sulfur but include a small amount of slightly negative mass-independent fractionation (MIF) anomalies, whereas sulfur from the pyrites in the sedimentary rocks has pronounced positive MIF, with ∆33S values that lie between 0.19 and 6.20‰ (with one outlier at −1.62‰). The wall rocks to the mineralization include sedimentary rocks that have contributed no detectable positive MIF sulfur to the VMS deposits, which is difficult to reconcile with the leaching model for the formation of these deposits. The sulfur isotope data are best explained by mixing between sulfur derived from a magmatic-hydrothermal fluid and seawater sulfur as represented by the interpillow pyrites. The massive sulfide lens pyrites have a weighted mean ∆33S value of −0.27 ± 0.05‰ (MSWD = 1.6) nearly identical with −0.31 ± 0.08‰ (MSWD = 2.4) for pyrites from the stringer zone, which requires mixing to have occurred below the sea floor. We employed a two-component mixing model to estimate the contribution of seawater sulfur to the total sulfur budget of the two Teutonic Bore volcanic complex VMS deposits. The results are 15 to 18% for both Teutonic Bore and Bentley, much higher than the 3% obtained by Jamieson et al. (2013) for the giant Kidd Creek deposit. Similar calculations, carried out for other Neoarchean VMS deposits give value between 2% and 30%, which are similar to modern hydrothermal VMS deposits. We suggest that multiple sulfur isotope analyses may be used to predict the size of Archean VMS deposits and to provide a vector to ore deposit but further studies are needed to test these suggestions.
Resumo:
Monitoring pedestrian and cyclists movement is an important area of research in transport, crowd safety, urban design and human behaviour assessment areas. Media Access Control (MAC) address data has been recently used as potential information for extracting features from people’s movement. MAC addresses are unique identifiers of WiFi and Bluetooth wireless technologies in smart electronics devices such as mobile phones, laptops and tablets. The unique number of each WiFi and Bluetooth MAC address can be captured and stored by MAC address scanners. MAC addresses data in fact allows for unannounced, non-participatory, and tracking of people. The use of MAC data for tracking people has been focused recently for applying in mass events, shopping centres, airports, train stations etc. In terms of travel time estimation, setting up a scanner with a big value of antenna’s gain is usually recommended for highways and main roads to track vehicle’s movements, whereas big gains can have some drawbacks in case of pedestrian and cyclists. Pedestrian and cyclists mainly move in built distinctions and city pathways where there is significant noises from other fixed WiFi and Bluetooth. Big antenna’s gains will cover wide areas that results in scanning more samples from pedestrians and cyclists’ MAC device. However, anomalies (such fixed devices) may be captured that increase the complexity and processing time of data analysis. On the other hand, small gain antennas will have lesser anomalies in the data but at the cost of lower overall sample size of pedestrian and cyclist’s data. This paper studies the effect of antenna characteristics on MAC address data in terms of travel-time estimation for pedestrians and cyclists. The results of the empirical case study compare the effects of small and big antenna gains in order to suggest optimal set up for increasing the accuracy of pedestrians and cyclists’ travel-time estimation.