493 resultados para acute response
Resumo:
The Foothills Medical Centre in Calgary, AB, Canada, is a tertiarycare referral center for southern Alberta and southeastern British Columbia. The Calgary Stroke Program, which serves a population of 1.5 million people and a geographic territory of more than 114,233 square kilometers (44,622 square miles), annually offers acute and follow-up care to more than 1,000 people with stroke. Leading the team of healthcare professionals dedicated to providing excellence in stroke patient care is a stroke nurse practitioner (SNP). The nurse practitioner role in Canada, as in many healthcare settings, was initially developed in response to cutbacks in medical residency programs and increasing acuity levels of hospitalized patients (Irvine et al., 2000). This article describes the development of the SNP role and its impact on system and process changes and patient care and outcomes in an acute stroke program in the Calgary Health Region.
Resumo:
PURPOSE: This study investigated the significance of baseline cortisol levels and adrenal response to corticotropin in shocked patients after acute myocardial infarction (AMI). METHODS: A short corticotropin stimulation test was performed in 35 patients with cardiogenic shock after AMI by intravenously injecting of 250 μg of tetracosactrin (Synacthen). Blood samples were obtained at baseline (T0) before and at 30 (T30) and 60 (T60) minutes after the test to determine plasma total cortisol (TC) and free cortisol concentrations. The main outcome measure was in-hospital mortality and its association with T0 TC and maximum response to corticotropin (maximum difference [Δ max] in cortisol levels between T0 and the highest value between T30 and T60). RESULTS: The in-hospital mortality was 37%, and the median time to death was 4 days (interquartile range, 3-9 days). There was some evidence of an increased mortality in patients with T0 TC concentrations greater than 34 μg/dL (P=.07). Maximum difference by itself was not an independent predictor of death. Patients with a T0 TC 34 μg/dL or less and Δ max greater than 9 μg/dL appeared to have the most favorable survival (91%) when compared with the other 2 groups: T0 34 μg/dL or less and Δ max 9 μg/dL or less or T0 34 μg/dL or higher and Δ max greater than 9 μg/dL (75%; P=.8) and T0 greater than 34 μg/dL and Δ max 9 μg/dL or less (60%; P=.02). Corticosteroid therapy was associated with an increased mortality (P=.03). There was a strong correlation between plasma TC and free cortisol (r=0.85). CONCLUSIONS: A high baseline plasma TC was associated with a trend toward increased mortality in patients with cardiogenic shock post-AMI. Patients with lower baseline TC, but with an inducible adrenal response, appeared to have a survival benefit. A prognostic system based on basal TC and Δ max similar to that described in septic shock appears feasible in this cohort. Corticosteroid therapy was associated with adverse outcomes. These findings require further validation in larger studies.
Resumo:
Scientists have injected endotoxin into animals to investigate and understand various pathologies and novel therapies for several decades. Recent observations have shown that there is selective susceptibility to Escherichia coli lipopolysaccharide (LPS) endotoxin in sheep, despite having similar breed characteristics. The reason behind this difference is unknown, and has prompted studies aiming to explain the variation by proteogenomic characterisation of circulating acute phase biomarkers. It is hypothesised that genetic trait, biochemical, immunological and inflammation marker patterns contribute in defining and predicting mammalian response to LPS. This review discusses the effects of endotoxin and host responses, genetic basis of innate defences, activation of the acute phase response (APR) following experimental LPS challenge, and the current approaches employed in detecting novel biomarkers including acute phase proteins (APP) and micro-ribonucleic acids (miRNAs) in serum or plasma. miRNAs are novel targets for elucidating molecular mechanisms of disease because of their differential expression during pathological, and in healthy states. Changes in miRNA profiles during a disease challenge may be reflected in plasma. Studies show that gel-based two-dimensional electrophoresis (2-DE) coupled with either matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) or liquid chromatography-mass spectrometry (LC-MS/MS) are currently the most used methods for proteome characterisation. Further evidence suggests that proteomic investigations are preferentially shifting from 2-DE to non-gel based LC-MS/MS coupled with data extraction by sequential window acquisition of all theoretical fragment-ion spectra (SWATH) approaches that are able to identify a wider range of proteins. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and most recently proteomic methods have been used to quantify low abundance proteins such as cytokines. qRT-PCR and next generation sequencing (NGS) are used for the characterisation of miRNA. Proteogenomic approaches for detecting APP and novel miRNA profiling are essential in understanding the selective resistance to endotoxin in sheep. The results of these methods could help in understanding similar pathology in humans. It might also be helpful in the development of physiological and diagnostic screening assays for determining experimental inclusion and endpoints, and in clinical trials in future
Resumo:
Background CD14, a coreceptor for several pattern recognition receptors and a widely used monocyte/macrophage marker, plays a key role in host responses to gram-negative bacteria. Despite the central role of CD14 in the inflammatory response to lipopolysaccharide and other microbial products and in the dissemination of bacteria in some infections, the signaling networks controlled by CD14 during urinary tract infection (UTI) are unknown. Methods We used uropathogenic Escherichia coli (UPEC) infection of wild-type (WT) C57BL/6 and Cd14−/− mice and RNA sequencing to define the CD14-dependent transcriptional signature and the role of CD14 in host defense against UTI in the bladder. Results UPEC induced the upregulation of Cd14 and the monocyte/macrophage-related genes Emr1/F4/80 and Csf1r/c-fms, which was associated with lower UPEC burdens in WT mice, compared with Cd14−/− mice. Exacerbation of infection in Cd14−/− mice was associated with the absence of a 491-gene transcriptional signature in the bladder that encompassed multiple host networks not previously associated with this receptor. CD14-dependent pathways included immune cell trafficking, differential cytokine production in macrophages, and interleukin 17 signaling. Depletion of monocytes/macrophages in the bladder by administration of liposomal clodronate led to higher UPEC burdens. Conclusions This study identifies new host protective and signaling roles for CD14 in the bladder during UPEC UTI.
Resumo:
"We thank MrGilder for his considered comments and suggestions for alternative analyses of our data. We also appreciate Mr Gilder’s support of our call for larger studies to contribute to the evidence base for preoperative loading with high-carbohydrate fluids..."